期刊文献+

基于时间可预测性的差分搜索盲信号分离算法 被引量:13

Blind signal separation algorithm based on temporal predictability and differential search algorithm
下载PDF
导出
摘要 针对基于仿生智能优化的盲信号分离算法计算量偏大的问题,提出了一种新的基于差分搜索的盲信号分离算法。采用信号在时间上的可预测性度量作为目标函数,使用差分搜索算法对目标函数进行优化求解。利用去相关消源方法从混合信号中去除每次分离出的源信号成分,通过逐次分离最终实现对所有源信号的成功恢复。仿真实验表明,所提算法可以有效实现对混合信号的盲分离。与其他算法相比,该算法在保证了更高分离精度的同时,具有更低的运算量。 A novel blind signal separation algorithm based on differential search was proposed for solving the high cal- culated amount problem in blind signal separation algorithm based on bio-inspired optimization. The temporal predict- ability of signal was used as the objective function and the differential search algorithm was used for solving it. The source signal component separated was wiped off using deflation method and all the source signals could be recovered successfully by repeating the separation process. Simulation results show that the algorithm can achieve blind separation from mixed signals efficiently with very high separation precision and very low computing time.
出处 《通信学报》 EI CSCD 北大核心 2014年第6期117-125,共9页 Journal on Communications
基金 国家自然科学基金资助项目(11127202 60802049)~~
关键词 盲信号分离 时间可预测性 差分搜索算法 消源 blind signal separation temporal predictability differential search algorithm deflation
  • 相关文献

参考文献22

  • 1MATO-MENDEZ F J,SOBREIRA-SEOANE M A.Blind separation to improve classification of traffic noise[J].Applied Acoustics,2011,72(8):590-598.
  • 2OZGEN M T,KURUOGLU E E,HERRANZ D.Astrophysical image separation by blind time-frequency source separation methods[J].Digital Signal Processing,2009,19(2):360-369.
  • 3IKHLEF A,ABED-MERAIM K,GUENNEC D L.Blind signal separation and equalization with controlled delay for MIMO convolutive systems[J].Signal Processing,2010,90(9):2655-2666.
  • 4SALIDO RUIZ R A,RANTA R,LOUIS-DORR V.EEG montage analysis in the blind source separation framework[J].Biomedical Signal Processing and Control,2011,6(1):77-84.
  • 5CICHOCKI A,THAWONMAS R,AMARI S.Sequential blind signal extraction in order specified by stochastic properties[J].Electronics Letters,1997,33(1):64-65.
  • 6HYVARINEN A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
  • 7孙守宇,郑君里,吴里江,赵莹.峭度自适应学习率的盲信源分离[J].电子学报,2005,33(3):473-476. 被引量:11
  • 8段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2010.
  • 9张朝柱,张健沛,孙晓东.基于自适应粒子群优化的盲源分离[J].系统工程与电子技术,2009,31(6):1275-1278. 被引量:19
  • 10张银雪,田学民,邓晓刚.基于改进人工蜂群算法的盲源分离方法[J].电子学报,2012,40(10):2026-2030. 被引量:25

二级参考文献44

  • 1傅予力,沈轶,谢胜利.基于规范高阶累积量的盲分离算法[J].应用数学,2006,19(4):869-876. 被引量:8
  • 2韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 3Common P. Independent component analysis. A new concept? [J]. Signal Processing, 1994,36 (3) : 287 - 314.
  • 4Cichoki A, Unbehauen R, Moszczynski R.A new on-line adaptive learning algorithm for blind separation of source signals[C]//Proc. ISANN, 1994:406 - 411.
  • 5Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1997,17(1) :25 -46.
  • 6Hyvarinen A. Fast and robust fixed--point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999,10(3):626 - 634.
  • 7Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proc. of the IEEE International Conference on Neural Networks, 1995:1942 - 1948.
  • 8Shi Y, Eberhart R. A modified particle swarm optimizer[C]//Proc. of the IEEE International Conference on Evolutionary Computation. Piscatawa y, NJ : IEEE Press, 1998 : 69 - 73.
  • 9Cichocki A,Thawonmas R,Amari S. Sequential blind signal extraction in order specified by stochastic proper- ties [J]. Electronics Letters, 1997,33 (1) : 64-65.
  • 10Kennedy J, Eberhart R C. Particle swarm optimiza- tion [C]// Proceedings of IEEE International Conference on Neural Networks. Perth,Australia, 1995 : 1942-1948.

共引文献60

同被引文献64

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部