期刊文献+

基于纹理分解的变换域JND模型及图像编码方法 被引量:4

Improved sub-band JND model with textural decomposition and its application in perceptual image coding
下载PDF
导出
摘要 为了提高变换域JND模型的精度,在计算对比度掩盖因子时只对纹理分量滤波并判断区域类型的方法避免了JND低估的问题。将改进的JND模型用于图像编码,考虑到辅助信息对编码效率的影响,把经过调整后的JND模型结合到量化过程中,能去除更多的视觉冗余并保持兼容性。仿真结果表明,纹理分解的方法提高了JND阈值,改进的编码方法在相似的视觉质量下能节省更多的码率并且不需要增加额外的比特开销,该编码思路也适用于视频编码。 In order to improve the accuracy of the just noticeable difference (JND) model in transform domain, an en- hanced JND model with a new method for contrast masking factor estimation was proposed. The image was decomposed and the textural image was used for an accurate block classification, thus the accurate JND in DCT domain was obtained. The improved JND model was applied on the perceptual image coding. Considering the compatibility and the auxiliary information which would affect the encoding efficiency, the JND model was adjusted to the quantization process and removed more visual redundancy. Experimental results show that the proposed algorithm can improve the JND threshold; compared with JPEG standard, the perceptual coding method can save more bit rate and does not need extra bit for auxiliary information at the similar visual quality. The proposed algorithm is also applicable to the perceptual video coding.
出处 《通信学报》 EI CSCD 北大核心 2014年第6期185-191,199,共8页 Journal on Communications
基金 国家自然科学基金资助项目(61170147) 福建省高校产学合作重大基金资助项目(2012H6012)~~
关键词 视觉特性 最小可觉察误差 纹理分解 图像编码 visual perception just noticeable difference(JND) textural decomposition image coding
  • 相关文献

参考文献17

  • 1YANY X K,LIN W S,LU Z K,et al.Just noticeable distortion model and its applications in video coding[J].Signal Processing:Image Communication,2005,20(7):662-680.
  • 2MATTEO N,FERNANDO P.Advanced H.264/AVC-based perceptual video:coding:architecture,tools,and assessment[J].IEEE Transaction on Circuits and Systems for Video Technology,2011,21(6):766-782.
  • 3PHIBANG N,BEGHDADI A,LUONG M.Perceptual watermarking robust to JPEG compression attack[A].Proceedings of the 5th International Symposium on Communications Control and Signal Processing[C].Rome,Italy,2012.1-4.
  • 4HSU M C,WU G L,CHIEN S Y.Combination of SSIM and JND with content-transition classification for image quality assessment[A].Visual Communications and Image Processing (VCIP)[C].San Diego,USA,2012.1-6.
  • 5LIU A,LIN W S,PAUL M,et al.Just noticeable difference for image with decomposition model for separating edge and texture regions[J].IEEE Transaction on Circuits and Systems for video Technology,2010,20(11):1648-1652.
  • 6WU J J,QI F,SHI G M.Self-similarity based structural regularity for just noticeable difference estimation[J].Journal of Visual Communication and Image Representation,2012,23(6):845-852.
  • 7AHUMADA A J,PETERSON H A.Luminance-model-based DCT quantization for color image compression[A].Hum.Vision Visual Process.Digital Display III[C].1992.365-374.
  • 8WATSON A B.DCTune:a technique for visual optimization of DCT quantization matrices for individual images[A].Proceedings of Society for Information Display Digest of Technical[C].San Diego,USA,1993.946-949.
  • 9ZHANG X H,LIN W S,XUE P.Improved estimation for just-noticeable visual distortion[J].Signal Processing,2005,84(4):795-808.
  • 10JIA Y,LIN W S,KASSIM A A.Estimating just noticeable distortion for video[J].IEEE Transactions on Circuits and Systems for Video Technology,2006,16(7):820-829.

二级参考文献14

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Yang J F, Zhang Y, Yin W T. A fast alternating direc- tion method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected Topics in Signal Pro- cessing, 2010, 4(2): 288-297.
  • 4姚庆东,毕厚杰,王兆华,徐孟侠.图像编码基础(第i版).北京:清华大学出版社,2006.50.
  • 5Xie X C, Yu L J. A new video codec based on compressed sensing. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-5.
  • 6Sarkis M, Diepold K. Depth map compression via com- pressed sensing. In: Proceedings of the 16th IEEE Interna- tional Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 737-740.
  • 7Zhang Y F, Mei S L, Chen Q Q, Chen Z B. A novel im- age/video coding method based on compressed sensing the- ory. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 1361-1364.
  • 8Candes E J, Romberg J. Sparsity and incoherence in com- pressive sampling. Inverse Problems, 2007, 23(3): 969-985.
  • 9Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 10Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004.

共引文献27

同被引文献28

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部