期刊文献+

4.10MPa氢氧暴露对大鼠氧化应激影响研究 被引量:2

Study on the effect of oxidative stress in rats exposed to 4.10MPa H_2-O_2
原文传递
导出
摘要 目的探讨4.10 MPa氢氧暴露对大鼠氧化应激的影响。方法无特定病原体级健康成年雄性SD大鼠30只随机分为对照组、氦氧组和氢氧组。3组大鼠分别在动物加压舱内的常压常氧空气、4.10 MPa氦氧及4.10 MPa氢氧环境中暴露24 h。出舱后处死大鼠,分离脑、肺和肝组织,比色法测定超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活力和还原型谷胱甘肽(GSH)、丙二醛(MDA)和8-羟基脱氧鸟苷(8-OhdG)水平。结果对照组、氦氧组和氢氧组3组大鼠脑组织SOD、GSH-Px活力及GSH水平分别比较,差异均有统计学意义[(153.09±37.62)vs(114.97±23.38)vs(162.31±36.03)mmol/(min·gprot),(1 042.27±248.32)vs(746.77±188.13)vs(1 040.73±192.41)μmol/(min·gprot),(2.45±0.64)vs(1.46±0.36)vs(2.06±0.49)mg/gprot,P<0.05,P<0.05,P<0.01];氦氧组脑组织SOD、GSH-Px活力及GSH水平均低于对照组(P<0.05),氢氧组脑组织SOD、GSH-Px活力和GSH水平均高于氦氧组(P<0.05)。3组大鼠肺组织GSH-Px活力和GSH水平分别比较,差异均有统计学意义[(437.29±46.62)vs(358.34±31.49)vs(446.40±55.52)μmol/(min·gprot),(2.30±0.55)vs(0.98±0.13)vs(1.67±0.30)mg/gprot,P<0.01,P<0.05];氦氧组肺组织GSH-Px活力和GSH水平均低于对照组(P<0.05),氢氧组肺组织GSH-Px活力高于氦氧组(P<0.05)。3组大鼠肝组织SOD和GSH-Px活力分别比较,差异均有统计学意义[(101.31±9.67)vs(93.99±6.13)vs(112.23±11.41)mmol/(min·gprot),(325.28±34.39)vs(276.67±22.29)vs(341.05±31.74)μmol/(min·gprot),P<0.01];氦氧组肝组织GSH-Px活力低于对照组(P<0.05),氢氧组肝组织中SOD和GSH-Px活力均高于氦氧组(P<0.05)。氢氧组脑、肺和肝3种组织SOD、GSH-Px活力及GSH水平分别与对照组相应组织比较,差异均无统计学意义(P>0.05)。3组组间脑、肺和肝3种组织的MDA及8-OhdG水平分别比较,差异均无统计学意义(P>0.05)。结论 4.10 MPa氢氧暴露大鼠的氧化应激指标未显现出明显改变,与氢对高氧毒性的抑制作用有关。从氧化应激的角度看,高压氢氧环境比高压氦氧环境具有更好的生理安全性。 Objective To investigate the effect of oxidative stress in rats exposed to 4.10 MPa H2-O2 .Methods Totally thirty male SD rats were randomly divided into a control group , a He-O2 group and a H2-O2 group, which were exposed re-spectively to normbaric normoxic air , 4.10 MPa He-O2 and 4.10 MPa H2-O2 for 24 hours with an animal chamber .Rats were sacrificed after exposure .Brain, lung and liver tissues were obtained at autopsy for the following tests .The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and levels of reduced glutathione (GSH), malondial-dehyde (MDA), 8-hydroxy-2&#39;-deoxyguanosine (8-OhdG) were determined by colorimetric methods .Results The diffe-rences of brain SOD, GSH-Px and GSH among the control , He-O2 and H2-O2 groups were statistically significant respectively [(153.09 ±37.62) vs (114.97 ±23.38) vs (162.31 ±36.03) mmol/(min· gprot), (1 042.27 ±248.32) vs (746.77 ±188.13) vs (1 040.73 ±192.41) μmol/(min· gprot), (2.45 ±0.64) vs (1.46 ±0.36) vs (2.06 ± 0.49) mg/gprot, P〈0.05, P〈0.05, P〈0.01].Brain SOD, GSH-Px and GSH in He-O2 group were lower than those in control group respectively (P〈0.05).Brain SOD, GSH-Px and GSH in H2-O2 group were higher than those in He-O2 group respectively ( P〈0.05 ) .The differences of lung GSH-Px and GSH among 3 groups were statistically significant&amp;nbsp;respectively [(437.29 ±46.62) vs (358.34 ±31.49) vs (446.40 ±55.52) μmol/(min· gprot), (2.30 ±0.55) vs (0.98 ±0.13) vs (1.67 ±0.30) mg/gprot, P〈0.01, P〈0.05].Lung GSH-Px and GSH in He-O2 group were lower than those in control group respectively (P〈0.05).Lung GSH-Px in H2-O2 group were higher than those in He-O2 group (P〈0.05).The differences of liver SOD and GSH-Px among 3 groups were statistically significant [(101.31 ±9.67) vs (93.99 ±6.13) vs (112.23 ±11.41) mmol/(min· gprot), (325.28 ±34.39) vs (276.67 ±22.29) vs (341.05 ± 31.74) μmol/(min· gprot), P〈0.01].Liver GSH-Px in He-O2 group was lower than that in control group (P〈0.05). Liver SOD and GSH-Px in H2-O2 group were higher than those in He-O2 group respectively (P〈0.05).SOD, GSH-Px and GSH of brain, lung, and liver in H2-O2 group showed no statistical significant differences (P〉0.05), when compared with the control group .There were no statistical significant differences in MDA and 8-OhdG of brain, lung, and liver among 3 groups (P〉0.05).Conclusion No obvious changes were shown in oxidative stress of 4.10 MPa H2-O2 exposed rats, which was correlated with attenuation of hyperoxic toxicity by hydrogen .The data suggests that hyperbaric H 2-O2 envi-ronment may be physiologically safer than hyperbaric He-O2 environment from perspective of oxidative stress .
机构地区 海军医学研究所
出处 《中国职业医学》 CAS 北大核心 2014年第3期260-264,271,共6页 China Occupational Medicine
基金 国家科技重大专项(2011ZX05027-005) 全军后勤科研项目(AHJ08J003)
关键词 氢氧 氦氧 饱和潜水 氧化应激 超氧化物歧化酶 谷胱甘肽过氧化物酶 还原型谷胱甘肽 丙二醛 8-羟基脱氧鸟苷 大鼠 H2-O2 He-O2 Saturation diving Oxidative stress Superoxide dismutase Glutathione peroxidase Reducedglutathione Malondialdehyde 8-hydroxy-2'-deoxyguanosine Rat
  • 相关文献

参考文献20

  • 1Djurhuus R, Segadal K, Svardal AM. Glutathione in blood cells de- creases without DNA breaks after a simulated saturation dive to 250 msw[ J ]. Aviat Space Environ Med ,2006,77 (6) :597 - 604.
  • 2Ikeda M, Nakabayashi K, Shinkai M, et al. Supplementation of an- tioxidants prevents oxidative stress during a deep saturation dive [ J ]. Tohoku J Exp Med,2004,203(4) :353 -357.
  • 3Hong SK, Bennett PB, Shiraki K, et al. Mixed-gas saturation diving [ M ] //Pollock DM. Comprehensive Physioiogy. Hoboken : Wiley- Blackwell Publishing Limited ,2011 : 1023 - 1045.
  • 4于峰涛,顾秀良,翁永斌,缪巍巍,何冰,王凯,肖卫兵,李峻,陆晓明,马学刚.模拟400m氢氧潜水动物试验加压舱系统的研制[J].海军医学杂志,2013,34(1):36-37. 被引量:6
  • 5Weibing X, Jun L, Zheng M, et al. Effect of 2. 1 MPa and4. 1 MPa H2-O2 exposure on auditory brain stem evoked potential in mice[ J ]. Undersea Hyperb Med,2005,32 ( 5 ) : 391 - 396.
  • 6Xiao WB, Li C, Chen R, et al. Effects of H2-O2 hyperbaric expo- sures on rodent survival[ C]. The Proceedings of the 8th international symposium on nautical medicine. Rijeka,Croatia,2005:31 -36.
  • 7Zwart SR, Kala G, Smith SM. Body iron stores and oxidative damage in humans increased during and after a 10- to 12-day undersea dive [J]. J Nutr,2009,139(1 ) :90 -95.
  • 8Thorsen E, Segadal K, Stuhr LE, et al. No changes in lung function af- ter a saturation dive to 2.5 MPa with intermittent reduction in PO2 during decompression[J]. Eur J Appl Physiol,2006,98(3):270-275.
  • 9Smith SM, Davis-Street JE, Fesperman JV, et al. Nutritional status changes in humans during a 14-day saturation dive: the NASA Ex- treme Environment Mission Operations V project [ J ]. J Nutr, 2004, 134(7) :1765 - 1771.
  • 10Zwart SR, Jessup JM, Ji JP, et al. Saturation diving alters folate sta- tus and biomarkers of DNA damage and repair [ J/OL ]. PLoS One, 2012,7 (2) : e31058.

二级参考文献80

  • 1Zhang W, Cai J, Kang Z, Sun X. Medical application of hydrogen molecule: Recent progress. Acad J Sec Mil Med Univ, 2009, 30(10): 1203-1205.
  • 2Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 2007, 13(6): 688-694.
  • 3Hong Y, Chen S, Zhang JM. Hydrogen as a selective antioxidant: A review of clinical and experimental studies. J Int Med Res, 2010, 38(6): 1893-1903.
  • 4Huang CS, Kawamura T, Toyoda Y, Nakao A. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res, 2010, 44(9): 971-982.
  • 5Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev, 1977, 41(1): 100-180.
  • 6Blaut M. Metabolism of methanogens. Antonie Van Leeuwenhoek, 1994, 66(1-3): 187-208.
  • 7Levitt MD, Bond JH Jr. Volume, composition, and source of intestinal gas. Gastroenterology, 1970, 59(6): 921-929.
  • 8Shimouchi A, Nose K. Changes in hydrogen gas release from the skin during inhalation of hydrogen-rich air. Am J Respir Crit Care Med, 2011, 183: A1682.
  • 9Strocchi A, Levitt MD. Maintaining intestinal H2 balance: Credit the colonic bacteria. Gastroenterology, 1992, 102(4 Pt 1): 1424-1426.
  • 10Maffei HV, Metz G, Bampoe V, Shiner M, Herman S, Brook CG. Lactose intolerance, detected by the hydrogen breath test, in infants and children with chronic diarrhoea. Arch Dis Child, 1977, 52(10): 766-771.

共引文献16

同被引文献34

  • 1王文波,方以群,张和翔,于峰涛,刘四辈,顾心清,胡明洋,张剑,顾靖华,张捍东,杨涛,许骥,李慈,刘平小,潘令松,唐亦奇.模拟153m深度快速上浮脱险的医学保障研究[J].中华航海医学与高气压医学杂志,2004,11(3):129-133. 被引量:9
  • 2龚锦涵,卢海,刘广青,孙云汉,袁锦富,潘令松,王文波,扬军,高丙春,尹世达,张景隆.350m模拟氦氧饱和潜水中人体生理功能变化的研究[J].中华航海医学杂志,1994,1(1):4-8. 被引量:11
  • 3方以群,倪勇康,王文波,楼坚,于峰涛,顾秀良,黄德浩,张和翔.潜艇艇员实艇快速上浮脱险训练的医学保障[J].海军医学杂志,2005,26(4):298-300. 被引量:5
  • 4章建程,赵敏,殷明,陈锐勇,方以群,王文波.脊髓减压病对大鼠TNF-α、NGF及TrkA表达的影响[J].第二军医大学学报,2006,27(5):567-568. 被引量:2
  • 5Pisoschi AM,Pop A.The role of antioxidants in the chemistry of oxidative stress:A review[J].Eur J Med Chem,2015,97:55-74.
  • 6Li S,Xu M,Niu Q,et al.Efficacy of procyanidins against in vivo cellular oxidative damage:a systematic review and meta-analysis[J].PLo S One,2015,10(10):e0139455.
  • 7Bhowmick D,Mugesh G.Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics[J].Org Biomol Chem,2015,13(41):10262-10272.
  • 8Glorieux C,Zamocky M,Sandoval JM,et al.Regulation of catalase expression in healthy and cancerous cells[J].Free Radic Biol Med,2015,87:84-97.
  • 9Benhar M.Nitric oxide and the thioredoxin system:a complex interplay in redox regulation[J].Biochim Biophys Acta,2015,1850(12):2476-2484.
  • 10Biojone C,Casarotto PC,Joca SR,et al.Interplay between nitric oxide and brain-derived neurotrophic factor in neuronal plasticity[J].CNS Neurol Disord Drug Targets,2015,14(8):979-987.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部