期刊文献+

基于级联和自适应子分类的目标检测方法

Object Detection Based on Cascade and Sub-categorization
下载PDF
导出
摘要 在基于机器学习的目标检测中,检测速度和检测准确性是主要考虑的问题。通过所设计的两级级联和自适应子分类的方法,有效提升了检测速度和检测的准确率。在实际检测时,可以通过一些简单的特征,快速否定绝大多数非检测目标的探测窗口,因此设计了两级级联的方法获得较高的检测速度:在两级级联的第一级采用一种快速简单的检测方法,快速地否定绝大多数错误的探测窗口,并使得几乎所有的正确的探测窗口通过第一级检测。在实际场景下,同一类目标常常有不同的表现形态,如不同姿势、颜色等,因此设计了自适应子分类的方法来获得较高的检测准确率:在两级级联的第二级通过对一类目标使用自动子分类的方法训练多个识别模型,在子分类过程中自动寻找最优分类方法,提升了识别的准确性。在利用著名的UIUC数据集以及一些高清图像的检测实验结果表明,该算法显著提升了检测速度和准确性。 In machine learning based object detection problems, the detection speed and detection accuracy are of the major concerns. In this paper, a new 2-stage detector with self-adaptive sub-categorization is proposed to detect objects rapidly and accurately. At the first stage of our proposed method, most positive detection sub-windows and some negative detection sub-windows are quickly detected by applying a fast detection algorithm. At the second stage, by taking the inner difference like different colors, different directions of one type of objects into account, a strong classifier is build up by using the idea of sub-categorization to achieve a higher recognition rate. Experimental results on UIUC dataset and some high-resolution images have demonstrated that our proposed method can achieve both high detection speed and high detection accuracy in real scenes.
出处 《电视技术》 北大核心 2014年第13期178-182,共5页 Video Engineering
关键词 目标检测 两级级联 自适应子分类 交叉验证 快速准确 object detection 2-stage Detector self-adaptive sub-categorization cross-validation fast and effective
  • 相关文献

参考文献9

  • 1闫娟,程武山,孙鑫.人脸识别的技术研究与发展概况[J].电视技术,2006,30(12):81-84. 被引量:20
  • 2ZHENG W, LIANG L. Fast car detection using image strip features [C]// Proc. IEEE Conference Computer Vision and Pattern Recogni- tion. Miami, USA :IEEE Press, 2009: 2703-2710.
  • 3DALAL N, TRIGGS B. Histograms of oriented graients for human detec- tion [ C ]// Proc. 1EEE Conference on Computer Vision and Pattern Rec- ognition. Los Alamitos, CA, USA : IEEE Press, 2005:886-893.
  • 4REN Haoyu, HEN, Cherkeng, ZHENG Wei. Fast object detection using boosted eo-eccurrence histograms of oriented gradients [ C]// Prec. IEEE lntenmtional Conference on Image Processing (ICIP). HongKong: 1EEE Press, 2010:2705-2708.
  • 5LIENHART R, MAYDT J. An extended set of Hoar-like features for rapid object detection [ C ]// Proe. International Conference on ImageProcessinz. New York. USA: IEEE Press.2002:900-903.
  • 6VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [ C]//Proe. 1EEE Conference Computer Vision and Pat- tern Recognition. Kauai ,USA :IEEE th'ess, 2001 : 1-511.
  • 7KUO N R. Robust nmlti-view car detection using unsupervised sub-cat- egorization[ C ]// Proe. Applications of Computer Vision. Salt Iake City, USA: IEEE Press, 2009:1-8.
  • 8AGARWAL A A, ROTH D. Learning to detect objects in images via a sparse, part-based representation[ J]. Pattern Analysis and Machine In- telligence ,2004,26( 11 ) : 1475-1490.
  • 9WU B, NEVATIA R. Cluster boosted tree classifier for multi-view, multi-pose object detection[ C]// Proe. IEEE Coxfferenee International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE Press, 2005:1-8.

二级参考文献5

  • 1杜成,苏光大,林行刚,顾华.多姿态人脸图像合成[J].光电子.激光,2004,15(12):1498-1501. 被引量:5
  • 2张晓华,山世光,高文,曹波.若干自动人脸识别技术评测与分析[J].计算机应用研究,2005,22(6):1-4. 被引量:10
  • 3PHILLIPS P J, MOON H. The FERET Evaluation Methodology for Face- Recognition Algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10):1090-1104.
  • 4PHILLIPS P J, GROTHER P J. Face Recognition Vendor Test 2002: Evaluation Report, Technical Report[R]. Gaithersburg, Md:[s.n.],2003.
  • 5The A4vision company. The technology of A4Vislon [DB/OL].(2004-5-05)[2006-10- 10] http://www.a4vision.com/.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部