期刊文献+

基于图割及均值漂移的合成孔径雷达图像强散射目标分割 被引量:5

Strong scattering objects segmentation based on graph cut and Mean Shift algorithm from SAR images
下载PDF
导出
摘要 针对合成孔径雷达(SAR)图像的特点及标准图割分割算法计算量较大等问题,提出了一种基于图割及均值漂移(Mean Shift)的高效的SAR图像强散射目标分割方法。该方法利用均值漂移算法对SAR图像进行预处理,将原图像表示为基于过分割区域的图结构;然后,以这些过分割图像区域为节点建立区域邻接图,运用图割分割算法得到SAR强散射目标的分割结果。与标准图割算法中以单像素为节点构建邻接图相比,参与图割算法的节点和边的数目减少了两个数量级,计算效率大幅提高。另外,根据SAR图像中目标的强散射特性,自动定义终端节点,减少了人工交互量。实验表明,该方法充分利用均值漂移及图割的优点,能够在背景杂波的干扰下有效地提取SAR强散射目标。 Aiming at the characteristics of Synthetic Aperture Radar (SAR) images and the problem of the standard graph cut segmentation algorithm's high computational complexity, a method of strong scattering objects segmentation based on graph cut and Mean Shift algorithm was proposed. Firstly, the image was pre-proeessed with the Mean Shift algorithm to produce over-segmentation areas. Then, a graph was built with nodes responding to over-segmentation areas, and then the results of SAR strong scattering targets segmentation were obtained by using graph cut algorithm. Compared with nodes responding to pixels in the standard graph cut algorithm, the number of nodes and edges in the graph were reduced by two orders of magnitude and the computational efficiency was significantly improved. Furthermore, according to the strong scattering characteristics of the targets in SAR images, the "object" terminal and the "background" terminal were defined automatically to reduce human interaction. The experiments show that the proposed method combines the advantages of Mean Shift and graph cut effectively, and it can effectively extract SAR strong scattering targets from the background clutter.
出处 《计算机应用》 CSCD 北大核心 2014年第7期2018-2022,共5页 journal of Computer Applications
关键词 均值漂移 图割 合成孔径雷达图像 强散射目标分割 Mean Shift graph cut Synthetic Aperture Radar (SAR) image strong scattering targets segmentation
  • 相关文献

参考文献13

  • 1尹奎英.SAR图 像处理机地面目标识别技术研究[D].西安:西安电子科技大学,2011.
  • 2COMANICIU D,MEER P.Mean Shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 3CHENG Y.Mean Shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 4LIY,SUN J,TANGC,etal.Lazy snapping[J].ACM Transactions on Graphics,2004,23(3):303-308.
  • 5COMANICIU D,MEER P.Mean Shift analysis and application[C]// Proceedings of the 7th IEEE International Conference on Computer Vision.Piscataway:IEEE,1999:1197-1203.
  • 6潘卓.SAR目标检测与自动识别相关技术研究[D].北京:中国科学院电子学研究所,2008:48-51.
  • 7GEMANS S,GEMANS D.Stochastic relaxation,Gibbs distributions and the Bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 8BESAG J.Spatial interaction and the statistical analysis of lattice system[J].Journal of the Royal Statistical Society,Series B:Methodological,1974,36(2):192-236.
  • 9刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012,38(6):911-922. 被引量:142
  • 10KOLMOGOROV V,ZABIN R.What energy functions can be minimized via graph cuts?[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(2):147-159.

二级参考文献103

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Boykov Y R,Funka-Lea G.Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision,2006,70(2):109-131.
  • 5Rother C,Kolmogorov V,Blake A.Grabcut-interactive foreground extraction using iterated graph cuts[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2004:309-314.
  • 6Li Y,Sun J,Tang C K,et al.Lazy snapping[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2004:303-308.
  • 7Mortensen E N,Reese L J,Barrett W A.Intelligent selection tools[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2000,2:776-777.
  • 8Mortensen E N,Barrett W A.Interactive segmentation with intelligent scissors[J].Graphical Models in Image Processing,1998,60(5):349-384.
  • 9Vicente S,Kolmogorov V,Rother C.Graph cut based image segmentation with connectivity priors[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2008:1-8.
  • 10Freedman D,Zhang T.Interactive graph cut based segmentation with shape priors[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2005,1:755-762.

共引文献148

同被引文献37

  • 1BOYKOV Y, JOLLY M. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images[ C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscat- away: IEEE, 2001:105 - 112.
  • 2BAUER C, POCK T, SORANTIN E, et al. Segmentation of inter- woven 3 D tubular tree structures utilizing shape priors and graph cuts [J]. Medical Image Analysis, 2010, 14(2) : 172 - 184.
  • 3PENG B, ZHANG L, ZHANG D, et al. Image segmentation by iter- ated re,on merging with localized graph cuts[ J]. Pattern Recogni- tion, 2011, 44(10): 2527-2538.
  • 4GROSGEORGE D, PETITJEAN C, DACHER J N, et aL Graph cut segmentation with a statistical shape raodel in cardiac MRI[ J]. Computer Vision and Image Understanding, 2013, 117 (9) : 1027 - 1035.
  • 5LERME N, LETOCART L, MALGOUYRES F. Reduced graphs for rain-cut/max-flow approaches in image segmentation[ J]. Elec- tronic Notes in Discrete Mathematics, 2011, 37:63 -68.
  • 6王义,张友磊,Peitgen Heinz-Otto,Bourquain Holger,郝强,陆建平,吴孟超.肝内血管的三维重建及肝癌局部解剖性切除[J].中华普通外科杂志,2008,23(12):914-917. 被引量:3
  • 7温佳,张兴敢.一种基于最小模糊熵遗传算法的SAR图像分割方法[J].航空兵器,2009,16(1):30-33. 被引量:4
  • 8张石,董建威,佘黎煌.医学图像分割算法的评价方法[J].中国图象图形学报,2009,14(9):1872-1880. 被引量:54
  • 9蒋世忠,易法令,汤浪平,涂泳秋.基于图割的MRI脑部图像肿瘤提取方法[J].计算机工程,2010,36(7):217-219. 被引量:11
  • 10许新征,丁世飞,史忠植,贾伟宽.图像分割的新理论和新方法[J].电子学报,2010,38(B02):76-82. 被引量:146

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部