期刊文献+

多尺度局部二值模式傅里叶直方图特征的表情识别 被引量:7

Multi-scale local binary pattern fourier histogram features for facial expression recognition
下载PDF
导出
摘要 针对表情识别的简便快捷问题,提出一种多尺度局部二值模式傅里叶直方图(LBP-HF)和主动形状模型(ASM)相结合的人脸表情识别方法。该方法首先利用ASM检测并分割人脸区域,减少不相关区域的影响;然后提取多尺度LBP-HF特征形成识别向量;最后采用最近邻分类方法进行表情识别。通过提取不同尺度的LBP-HF特征,研究各个尺度LBP-HF特征对表情识别的影响,最终结合多尺度LBP-HF特征实现表情识别,获得更有效的表情特征。通过与Gabor特征的实验结果进行对比,验证该方法的简便可行性,最高平均识别率达到93.5%。实验结果表明,该方法可以用于人机交互中。 To achieve simple and convenient facial expression recognition, a method combining muhi-scale Local Binary Pattern Histogram Fourier (LBP-HF) and Active Shape Model (ASM) was proposed. Firstly, the face regions were detected and segmented by ASM to reduce the influence of unrelated regions, and then LBP-HF were extracted to form recognition vectors. Finally, the nearest neighborhood classifier was applied to recognize expressions. The influences of various scale LBP- HF features on facial expression recognition were studied through extracting LBP-HF features from different scales. At last, muhi-scale LBP-HF features were concatenated to discriminate expressions, and more effective expression features were obtained. By comparison with the experimental result of Gabor features, its feasibility and simplieation are validated, and the highest mean recognition rate is 93.50%. The experimental results demonstrate that the method can be used for human- computer interaction.
出处 《计算机应用》 CSCD 北大核心 2014年第7期2036-2039,2065,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61273339)
关键词 表情识别 局部二值模式 多尺度 傅里叶直方图特征 facial expression recognition local binary pattern multi-scale histogram Fourier features
  • 相关文献

参考文献20

  • 1MEHRABIAN A.Communication without words[J].Psychological Today,1968,2(4):53-56.
  • 2FASEL B,LUETTIN J.Automatic facial expression analysis:a survey[J].Pattern Recognition,2003,36(1):259-275.
  • 3YANG M-H,KRIEGMAN D J,AHUJA N.Detecting faces in images:a survey[J].IEEE Transactions on Pattern Analysis and Machine Learning,2002,24(1):34-58.
  • 4PANTIC M,ROTHKRANTZ L J M.Automatic analysis of facial expressions:the state of the art[J].IEEE Transactions on Pattern Analysis and Machine Learning,2000,22(12):1424-1445.
  • 5JAIN A K,DUIN R P W,MAO J.Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Learning,2000,22(1):4-37.
  • 6ZHAN Y,YE J,NIU D,et al.Facial expression recognition based on Gabor wavelet transformation and elastic template matching[C]//Proceedings of the 3rd International Conference on Image and Graphics.Washington,DC:IEEE Computer Society,2004:254-257.
  • 7LI Z,IMAI J,KANEKO M.Facial-component-based bag of words and PHOG descriptor for facial expression recognition[C]// Proceedings of the 2009 IEEE International Conference on System,Man,and Cybernetics.Piscataway:IEEE,2009:1353-1358.
  • 8RUDOVIC O,PANTIC M,PATRAS I.Coupled Gaussian processes for pose-invariant facial expression recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35 (6):1357-1369.
  • 9RIVERA A R,CASTILL J R,CHAE O.Local directional number pattern for face analysis:face and expression recognition[J].IEEE Transactions on Image Processing,2013,22(5):1740-1752.
  • 10周书仁,梁昔明.融合独立分量分析与支持向量聚类的人脸表情识别方法[J].计算机应用,2011,31(6):1605-1608. 被引量:3

二级参考文献12

  • 1WANG J-S, CHIANG J-C. A cluster validity measure with outlier detection for support vector clustering[ J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B, 2008, 38(1): 78 -89.
  • 2HUR A B, HORN D, SIEGELMANN H T, et al. Support vector clustering[ J]. Machine Learning Research, 2001, 2:125 - 137.
  • 3LEE S, DANIELS K. Gaussian kernel width generator for support vector clustering[ C]// Proceedings of the International Conference on Bioinformatics and its Applications. [ S.l. ] : IEEE, 2005:151 - 162.
  • 4KWAK N. Feature extraction for classification problems and its application to face recognition[ J]. Pattern Recognition, 2008, 41 (5) : 1701 - 1717.
  • 5CHUANG C-F, SHIH F Y. Recognizing facial action units using in- dependent component analysis arid support vector machine[ J]. Pattern Recognition, 2006, 39(9) : 1795 - 1798.
  • 6DAMMERS J, AXER M, GRASSEL D, et al. Signal enhancement in polarized light imaging by means of independent component analysis[J]. Neuroimage, 2010, 49(2) : 1241 - 1248.
  • 7GHAHRAMANI Z, HINTON G. The EM algorithm for mixtures of factor analyzers, CRG-TR-96-1 [ R]. Toronto: University of Toronto, 1996.
  • 8BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Fisherfaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711 -720.
  • 9LYONS M J, BUDYNEK J, AKAMATSU S. Automatic classification of single facial images[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(12) : 1357 - 1362.
  • 10LING PING, ZHOU CHUNGUANG, ZHOU XU. Improved support vector clustering [ J]. Engineering Applications of Artificial Intelligence, 2010, 23(4):552-559.

共引文献2

同被引文献52

  • 1宋伟,赵清杰,宋红,樊茜.基于关键块空间分布与Gabor滤波的人脸表情识别算法[J].中南大学学报(自然科学版),2013,44(S2):239-243. 被引量:7
  • 2王亮申,欧宗瑛,朱玉才,侯杰,于京诺.基于SVM的图像分类[J].计算机应用与软件,2005,22(5):98-99. 被引量:18
  • 3孟令奎,胡春春.基于模糊划分测度的聚类有效性指标[J].计算机工程,2007,33(11):15-17. 被引量:9
  • 4OJALA T,PIETIKAINEN M,HARWOOD D.A compara tive study of texture measures with classification based on feature distributions[J].Pattern Recognition,1996,29(1):51-59.
  • 5OJALA T,PIETIKAINEN M,MAENPAA T. Multiresolu- tion gray scale and rotation invariant texture classification with local binary patterns[J].IEEE Trans,on Pattern A- nalysis and Machine Intelligence,2002,24(7):971-987.
  • 6MAENPAA T,PIETIKAINEN M.Texture analysis with local binary patterns.Handbook of Pattern Recognition and Computer Vision[M].3rd ed.World Scientific,Sin- gapore,2001:711-736.
  • 7CORTES C,VAPMK V.Support vector networks Ma- chine Learning[J].Machine Intelligence,2002,24(7):971-987.
  • 8LIN C J.A Practical Guide to Support Vector Classifica- tion[Z].Taiwan:National Taiwan University,Initial ver- sion:,2010.
  • 9CHANG C C'LIN C J.LIBSVM:A Library for Support Vector Machines[Z].Taiwan:National Taiwan Universi- ty,Initial version:2001 Last updated:March 4,2013.
  • 10章智儒.SVM在图像分类中的应用[J].信息技术,2009,33(8):133-136. 被引量:7

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部