期刊文献+

基于模糊相似测量和模糊映射改进的模糊支持向量机对不确定性信息处理 被引量:2

Uncertainty data processing by fuzzy support vector machine with fuzzy similarity measure and fuzzy mapping
下载PDF
导出
摘要 针对传统模糊支持向量机(FSVM)对于不确定性信息处理的局限性,提出一种基于模糊相似测量和高维空间模糊映射的改进模糊支持向量机方法。首先,构建不确定信息集的模糊相似测量函数,从不确定性信息本质出发,利用Gregson相似度,构建具有模糊特征的相似测量函数;然后,根据空间映射理论,将模糊相似测量函数应用于FSVM,构建满足Mercer理论的FSVM相似内核;最后,利用该方法对旋转超声加工中材料切屑率(MRR)中的不确信性信息进行建模。对比具有传统内核的FSVM,所提方法能够利用较少的运算步骤完成较好的不确定性信息处理,有效提高不确定信息处理的准确性,且计算复杂度低。 In order to improve the processing ability for uncertainty data using the traditional Fuzzy Support Vector Machine (FSVM), FSVM with fuzzy similarity measure and high dimensional space fuzzy mapping was proposed. Firstly, by using Gregson similarity measure, the fuzzy similarity measure function was established, which was effective to explain the uncertainty information. And then, using the theory of mapping and Mercer, fuzzy similarity kernel learning was formulated and used in the algorithm of the FSVM. Finally, this algorithm was used to the modeling of the material removal rate in the rotary ultrasonic machining with uncertainty data. Compared to the results using traditional FSVM methods, the current approach can better process uncertainty data with less operation steps. And the proposed method has higher accuracy in processing uncertainty data with lower computational complexity.
出处 《计算机应用》 CSCD 北大核心 2014年第7期2066-2070,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(71001085)
关键词 相似测量 映射 核函数 模糊支持向量机 不确信性数据 similarity measure mapping kernel function Fuzzy Support Vector Machine (FSVM) uncertainty data
  • 相关文献

参考文献20

  • 1VAPNIK V,LEVIN E,LECUN Y.Measuring the Vc-dimension of a learning machine[J].Neural Computation,1994,6(5):851-876.
  • 2LIN C-J,CHEN C-H.A self-constructing compensatory neural fuzzy system and its applications[J].Mathematical and Computer Modelling,2005,42(3/4):339-351.
  • 3LIN C-J,HO W-H.An asymmetry-similarity-measure-based neural fuzzy inference system[J].Fuzzy Sets and Systems,2005,152(3):535-551.
  • 4LIN C-F,WANG S-D.Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2273
  • 6XIONG H,SWAMY M N S,AHAMAD M O.Optimizing the kernel in the empirical feature space[J].IEEE Transactions on Neural Networks,2005,16(2):460-474.
  • 7SCHOELKOPF B,MIKA S,BURGES C,et al.Input space versus feature space in kernel based methods[J].IEEE Transactions on Neural Networks,1999,10(5):1000-1017.
  • 8LI J,DENG G,LI H,et al.The relationship between similarity measure and entropy of intuitionistic fuzzy sets[J].Information Sciences,2012,188:314-321.
  • 9LE C H.A relevance-based learning model of fuzzy similarity measures[J].IEEE Transactions on Fuzzy Systems,2012,20(1):57-68.
  • 10HWANG C-M,YANG M-S,HUNG W-L,et al.A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition[J].Information Sciences,2012,189:93-109.

二级参考文献16

  • 1REBILLE Y. Decision making over necessity measures through the Choquet integral criterion [J]. Fuzzy Sets and Systems, 2006, 157(23): 3025-3039.
  • 2KANG W S, CHOI J Y. Domain density description for multiclass pattern classification with reduced computational load [J]. Pattern Recognition, 2008, 41 (6): 1997-2009.
  • 3SHIH F Y, ZHANG K. A distance-based separator representation for pattern classification [J]. Image and Vision Computing, 2008, 26(5): 667-672.
  • 4CHEN S M. New methods for subjective mental workload assessment and fuzzy risk analysis [J]. Cybernetics and Systems, 1996, 27(5): 449-472.
  • 5HSIEH C H, CHEN S H. Similarity of generalized fuzzy numbers with graded mean integration representation [C]// Proceedings of the Eighth International Fuzzy Systems Association World Congress. Taipei: IFSApress, 1999, 2:551-555.
  • 6LEE H S. An optimal aggregation method for fuzzy opinions of group decision [C]// Proceedings of 1999 IEEE International Conference on Systems, Man, Cybernetics. Tokyo: Piscataway, IEEE, 1999, 3: 314-319.
  • 7CHEN S J, CHEN S M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers [J]. IEEE Trans. on Fuzzy Systems, 2003, 11 (1): 45-56.
  • 8LEE S H, CHEON S P, K/M J H. Measure of certainty with fuzzy entropy fimction [J]. Lecture Notes in Artificial Intelligence, 2006, 4114: 134-139.
  • 9LEE S H, KIM J M, CHOI Y K. Similarity measure construction using fuzzy entropy and distance measure [J]. Lecture Notes in Artificial Intelligence, 2006, 4114: 952-958.
  • 10LIU X. Entropy, distance measure and similarity measure of fuzzy sets and their relations [J]. Fuzzy Sets and Systems, 1992, 52: 305-318.

共引文献2278

同被引文献10

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部