期刊文献+

蛋白质—小分子相互作用模型的构建

Construction of protein-compound interactions model
下载PDF
导出
摘要 构建可解释和可大规模计算的蛋白质—小分子相互作用模型是一个重要的课题。提出一种新的蛋白质—小分子相互作用模型:首先分别用氨基酸三聚物集群和化合物结构片段来描述蛋白质和小分子;然后将蛋白质和小分子片段作为二部图的两部分,片段间的相互作用强度作为二部图的边;最后蛋白质和小分子的相互作用则是蛋白质片段和小分子片段之间相互作用的叠加。实验结果表明,该模型预测的准确率达到97%且具有很好的解释性。 Building an interpretable and large-scale protein-compound interactions model is an very important subject. A new chemical interpretable model to cover the protein-compound interactions was proposed. The core idea of the model is based on the hypothesis that a protein-compound interaction can be decomposed as protein fragments and compound fragments interactions, so composing the fragments interactions brings about a protein-compound interaction. Firstly, amino acid oligomer clusters and compound substructures were applied to describe protein and compound respectively. And then the protein fragments and the compound fragments were viewed as the two parts of a bipartite graph, fragments interactions as the edges. Based on the hypothesis, the protein-compound interaction is determined by the summation of protein fragments and compound fragments interactions. The experiment demonstrates that the model prediction accuracy achieves 97% and has the very good explanatory.
出处 《计算机应用》 CSCD 北大核心 2014年第7期2129-2131,2144,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272274 60970063 31270101)
关键词 蛋白质描述 小分子描述 蛋白质—小分子相互作用模型 二部图 片段 protein representation compound representation protein-compound interaction bipartite graph fragment
  • 相关文献

参考文献13

  • 1RAREY M,KRAMER B,LENGAUER T,et al.A fast flexible docking method using an incremental construction algorithm[J].Journal of Molecular Biology,1996,261(3):470-489.
  • 2DOBSON C M.Chemical space and biology[J].Nature,2004,432(7019):824-828.
  • 3STOCKWELL B R.Chemical genetics:ligand-based discovery of gene function[J].Nature Reviews Genetics,2000,1 (2):116-125.
  • 4KANEHISA M,GOTO S,HATTORI M,et al.From genomics to chemical genomics:new developments in KEGG[J].Nucleic Acids Research,2006,34(S1):D354-D357.
  • 5CAODS,LIANGYZ,DENGZ,etal.Genome-scale screening of drug-target associations relevant to Ki using a chemogenomics approach[J].Public Library of Science One,2013,8(4):e57680.
  • 6BREIMAN L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 7JACOB L,VERT J P.Protein-ligand interactionprediction:an improved chemogenomics approach[J].Bioinformatics,2008,24(19):2149-2156.
  • 8YAMANISHI Y,PAUWELS E,SAIGO H,et al.Extracting sets of chemical substructures and protein domains governing drug-target interactions[J].Journal of Chemical Information and Modeling,2011,51(5):1183-1194.
  • 9MEI J P,KWOH C K,YANG P,et al.Drug-target interaction prediction by learning from local information and neighbors[J]Bioinformatics,2013,29(2):238-245.
  • 10NAGAMINE N,SAKAKIBARA Y.Statistical prediction of protein chemical interactions based on chemical structure and mass spectrometry data[J].Bioinformatics,2007,23(15):2004-2012.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部