期刊文献+

基于支持向量回归的非线性时间序列预测

Nonlinear Time Series Forecasting Based on Support Vector Regression
下载PDF
导出
摘要 针对实际系统的高度非线性及复杂动态性,把非线性时间序列建模与预测问题转换为函数回归估计问题。把具有全局最优性、较好泛化能力及训练效率高的最小二乘支持向量回归算法应用到非线性时间序列预测与建模中。最后给出了某市年电力负荷预测的应用实例,与传统支持向量回归算法相比,文章描述的方法具有较好的预测精度。 The problem of nonlinear time series forecasting is transformed to the problem of function regression according to the nonlinearity and the complexity of actual systems. The Least Squares Support Vector Regression which has advantages such as global optimization and good generalization is used in nonlinear time series forecasting. Finally, an example of power load forecasting of one year is given. The experiments showed Least Squares Support Vector Regression had better forecasting accuracy than Support Vector Regression.
作者 胡俊杰
机构地区 浙江万里学院
出处 《浙江万里学院学报》 2014年第3期73-77,共5页 Journal of Zhejiang Wanli University
基金 浙江省教育厅科研项目"非线性时间序列建模与预测的支持向量机算法研究"(Y201122103)
关键词 非线性时间序列 预测 最小二乘支持向量回归 nonlinear time series forecasting least squares support vector regression
  • 相关文献

参考文献9

  • 1范建青,姚琦伟,陈敏.非线性时间序列——建模、预测及应用[M] .北京:高等教育出版社,2005.
  • 2王建军.基于知识挖掘技术的智能协同电力负荷预测研究[D] .华北电力大学,2011.
  • 3Rumelhart DE,Hinton GE,Williams RJ.Learning internal representations by error propagation parallel distributed processing[J] .Foundations,1986(10):318 362.
  • 4Stephen L.Chiu.Fuzzy model identification based on cluster estimation[J] .Journal of Intelligent and Fuzzy Systems,1994,02(03):267 278.
  • 5Jang JSR,ANFIS.Adaptive network based fuzzy inference system[J] .IEEE Trans Syst Man Cybern,1993,23(3):665 685.
  • 6Suykens JAK,Vandewalle J.Least squares support vector machine classifiers[J] .Neural Process Lett,1999,9(3):293 300.
  • 7杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报(工学版),2003,37(5):521-527. 被引量:118
  • 8张善文,雷英杰,冯有前.MATLAB在时间序列分析中的应用[M].西安:西安电子科技大学出版社,2006.
  • 9林智仁,LIBSVM Tools[EB/OL] .http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/2014-01.

二级参考文献22

  • 1VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 2VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 3SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 4SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 5CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 6LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 7SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 8ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.
  • 9DOMENICONI C. GUNOPULOS D. Incremental support vector machine construction [A]. Proceedings of IEEE Int Conf on Data Mining[C]. San Jose, USA:IEEE,2001. 589--592.
  • 10OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machine [A].Proceedings of 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. Amelea Island, FL:IEEE, 1997. 276--285.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部