期刊文献+

细菌脂肪酶在大肠杆菌细胞表面的功能性展示 被引量:1

Display of Functionally Active Lipases on the Escherichia coli Cell Surface
下载PDF
导出
摘要 细胞表面展示技术已广泛应用于突变文库的高通量筛选,有力地促进了蛋白质工程的发展。以来自于铜绿假单胞菌的自转运蛋白Est A的羧基端结构域作为锚定区,构建脂肪酶LipA与EstA羧基端结构域的融合基因,并将融合基因插入到改造后的pACYC-Duet表达载体中,获得表面展示载体pBCCB-X1。将载体pBCCB-X1分别导入到大肠杆菌JK321和大肠杆菌UT5600菌株中,以IPTG诱导融合基因的表达。分别用三丁酸甘油酯定性检测和pNPO定量检测诱导表达后的全细胞脂肪酶的水解活性。试验结果表明,脂肪酶LipA在大肠杆菌JK321和大肠杆菌UT5600细胞表面均得到功能性展示,水解活性分别为(2.8±0.1)U/OD和(2.6±0.06)U/OD。脂肪酶LipA在大肠杆菌细胞表面的功能性展示,为后续高通量筛选LipA突变基因文库,奠定了坚实的基础。 Cell-surface display technology was used widely in the filed of high throughput screening of a mutant library, which promoted the development of protein engineering. The carboxyl terminal domain of the EstA from Pseudomonas aeruginosa was used as carrier protein and the lipA gene was fused to the estA’gene by overlap extension PCR. The fusion gene lipA-estA’was then inserted the genetically modified plasmid pACYC-Duet, which promoter was changed into lacZ promoter. The resulting plasmid pBCMB-X1 was transformed into E. coli JK321 and E. coli UT5600, respectively. The lipA gene was induced expression by IPTG and the recombinant LipA was functionally displayed on the cell surface of E. coli JK321 and E. coli.UT5600, respectively. The hydrolysis activity of the LipA was(2.8±0.1)U/OD and(2.6±0.06)U/OD, respectively.
出处 《生物技术通报》 CAS CSCD 北大核心 2014年第6期192-198,共7页 Biotechnology Bulletin
基金 国家自然科学基金项目(31370802) 福建省科技厅重点项目(2013H0021) 福建省自然科学基金杰青项目(2009J06013)
关键词 大肠杆菌 细胞表面展示 脂肪酶A 枯草芽胞杆菌 Escherichia coli Cell surface display Lipase A Bacillus subtilis
  • 相关文献

参考文献22

  • 1Jaeger KE,DljkstraI BW,Reetz MT.Bacterial biocatalysts:molecular biology,three-dimensional structures and biotechnological applications of lipases[J].Annu Rev Microbiol,1999,53:315-351.
  • 2Hasan F,Shah AA,Hameed A.Industrial applications of microbial lipases[J].Enzyme Microb Technol,2006,39(2):235-251.
  • 3van Pouderoyen G,Eggert T,Jaeger KE,et al.The crystal structure of Bacillus subtilis lipase:a minimal α/β hydrolase fold enzyme[J].J Mol Biol,2001,309(1):215-226.
  • 4Reetz MT,Carballeira JD.Iterative saturation mutagenesis(ISM)for rapid directed evolution of functional enzymes[J].Nat Protoc,2007,2(4):891-903.
  • 5Zhang XZ,Zhang Y.Simple,fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis[J].Microb Biotechnol,2011,4(1):98-105.
  • 6Vojcic L,Despotovic D,Martinez R,et al.An efficient transformation method for Bacillus subtilis DB104[J].Appl Microbiol Biotechnol,2012,94(2):487-493.
  • 7Becker S,Schmoldt HU,Adams TM,et al.Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts[J].Curr Opin Biotechnol,2004,15(4):323-329.
  • 8Yang G,Withers SG.Ultrahigh-throughput FACS-based screening for directed enzyme evolution[J].Chembiochem,2009,10(17):2704-2715.
  • 9Baek JH,Han MJ,Lee SH,et al.Enhanced display of lipase on the Escherichia coli cell surface,based on transcriptome analysis[J].Appl Environ Microbiol,2010,76(3):971-973.
  • 10Lee SH,Choi JI,Park SJ,et al.Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis[J].Appl Environ Microbiol,2004,70(9):5074-5080.

同被引文献38

  • 1Freudl R, MacIntyre S,Degen M, et al. Cell surface exposure of the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol, 1986, 188: 491-494.
  • 2Nicolay T,Vanderleyden J,Spaepen S. Autotransport-er-based cell surface display in Gram- negative bacteria. Crit Rev Microbiol, 2015, 41: 109-123.
  • 3Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem, 2009, 10:2704-2715.
  • 4Becker S, Schmoldt HU, Adams TM, et al. Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol,2004,15:323-329.
  • 5Charbonneau ME,Mourez M. The Escherichia coli AIDA-I autotransporter undergoes cytoplasmic glycosylation independently of export. Res Microbiol, 2008, 159: 537-544.
  • 6Sherlock O, Dobrindt U, Jensen JB, et al. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. J Bacteriol, 2006, 188: 1798-1807.
  • 7Brockmeyer J,Spelten S, Kuczius T, et al. Structure and function relationship of the autotransport and proteolytic activity of EspP from Shiga toxin-producing Escherichia coli. Plos One, 2009,4: e6100.
  • 8Tapia-Pastrana G,Chavez-Duenas L, Lanz-Mendoza H, et al. VirK is a periplasmie protein required for efficient secretion of plasmid-encoded toxin from enteroaggre-gative Escherichia coli. Infect Immun, 2012, 80: 2276-2285.
  • 9Jong WS, ten Hagen-Jongman CM, Ruijter E, et al. YidC is involved in the biogenesis of the Secreted autotransporter hemoglobin protease. J Biol Chem, 2010,285: 39682-39690.
  • 10Oliver DC, Huang G,Nodel E,et al. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol, 2003, 47:1367-1383.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部