期刊文献+

优化易错PCR条件以提高毕赤酵母GAP启动子文库突变效率 被引量:1

High-error-rate Random Mutagenesis of GAP Promoter in Pichia pastoris Using an Optimited Error Prone PCR
下载PDF
导出
摘要 高效的随机突变策略对于构建含有丰富突变体的启动子文库至关重要。为了建立一个突变率适中并能获得较多有益突变子的易错PCR(error-prone PCR,EP-PCR)条件,实现毕赤酵母GAP启动子的高效突变,对EP-PCR反应条件进行了优化。考察了模板浓度、反应循环数和Mg2+浓度对EP-PCR的产物得率和突变率的影响后,确定了适于GAP启动子突变的EP-PCR条件:模板浓度、反应循环数和Mg2+浓度分别为1 ng/μL、25和10 mmol/L。优化EP-PCR条件后,GAP启动子突变率为1.1%,连续进行3轮EP-PCR后突变率可达到4.0%。利用优化后EP-PCR对GAP启动子进行随机突变,筛选了250个突变子,获得5个启动子强度高于野生型GAP启动子的突变体,有益突变达到了2%,可用于构建GAP启动子文库。 The first important step toward a successful preparation of large and diverse promoter library with desired complexity, is to select a suitable mutagenesis strategy. To generate a promoter library of GAP promoter(pGAP)variants, mutations were introduced using error-prone PCR. After optimization of the conditions for EP-PCR random mutagenes, high mutation(error rate 1.1%)frequence was obtained using 1 ng/μL template and 10 mmol/L Mg2+, in combination with 25 thermal cycles. To increase mutational diversity and reach an appropriate error rate, three consecutive rounds of EP-PCR were carried out under the same conditions. After random sequencing of 10 clones from each round, an overall range of mutation rates from 1.1%to 4.0%was observed. Then, 250 clones containing pGAP variants were screened using the highthroughput screening approach in 48-deep-well plates. Among them, 5 mutants exhibited higher fluorescent intensity compared to the wild-type promoter.
出处 《生物技术通报》 CAS CSCD 北大核心 2014年第6期211-217,共7页 Biotechnology Bulletin
基金 广西自然科学基金项目(2013GXNSFBA019096)
关键词 易错PCR 突变效率 随机突变 毕赤酵母 GAP启动子 Error-prone PCR Mutation frequency Random mutagenesis Pichia pastoris GAP promoter
  • 相关文献

参考文献21

  • 1Braatsch S,Helmark S,Kranz H,et al.Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning[J].Biotechniques,2008,45(3):335-337.
  • 2Siegl T,Tokovenko B,Myronovskyi M,et al.Design,construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes[J].Metabolic Engineering,2013,19:98-106.
  • 3Rytter JV,Helmark S,Chen J,et al.Synthetic promoter libraries for Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology,2014,Published online.
  • 4Alper H,Fischer C,Nevoigt E,et al.Tuning genetic control through promoter engineering[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(36):12678-12683.
  • 5Cox RS 3rd,Surette MG,Elowitz MB.Programming gene expression with combinatorial promoters[J].Molecular Systems Biology,2007,3:145-156.
  • 6Murphy KF,Balazsi G,Collins JJ.Combinatorial promoter design for engineering noisy gene expression[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(31):12726-12731.
  • 7Ellis T,Wang X,Collins JJ.Diversity-based,model-guided construction of synthetic gene networks with predicted functions[J].Nature Biotechnology,2009,27(5):465-471.
  • 8Nevoigt E,Fischer C,Mucha O,et al.Engineering promoter regulation[J].Biotechnology and Bioengineering,2007,96(3):550-558.
  • 9Drummond DA,Iverson BL,Georgiou G,et al.Why high-error-rate random mutagenesis libraries are enriched in functional and impro-ved proteins[J].Journal of Molecular Biology,2005,350(4):806-816.
  • 10Kuniehika K,Hashimoto Y,Imoto T.Robustness of hen lysozyme monitored by random mutations [ J ] .Protein Engineering,2002,15 ( 10 ) : 805-809.

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部