期刊文献+

采用双模飞行的粒子群优化算法 被引量:10

Particle Swarm Optimization Algorithm with Double-Flight Modes
下载PDF
导出
摘要 基于对现实中鸟群飞行方式的模拟,提出一种采用双模飞行的粒子群优化算法.该算法中的粒子在搜索过程中可使用变轨和不变轨两种飞行模式,并根据群体信息反馈和自身状态选择自己的飞行模式.文中选取典型的高维复杂优化问题作为算法优化性能测试.实验表明该算法的全局搜索能力有较大提高,能有效避免早熟收敛问题,可用于求解高维的复杂优化问题. An optimization algorithm is proposed based on the simulation of flight modes of the real birds, namely particle swarm optimization algorithm with double-flight modes (DMPSO). Particles can use maneuver flight-mode or non-maneuver flight-mode to fly during searching. Each particle chooses its flight-mode according to the feedback of the swarm information and its own state in the search. To test the performance of DMPSO, experiments are carried out on some typical complex high-dimensional optimization problems. The experimental results show that the DMPSO avoids the premature convergence problems and it is effective when solving complex high dimensional optimization problems.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第6期533-539,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61074185) 广西自然科学基金项目(No.0832084) 广西高等学校科研项目(No.201202ZD032)资助
关键词 粒子群优化算法(PSO) 双模飞行 变轨飞行模式 决策因子 Particle Swarm Optimization (PSO), Double-Flight Mode, Maneuver Flight-Mode,Deciding Factor
  • 相关文献

参考文献12

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization // Proc ofthe IEEE International Conference on Neural Networks. Perth,USA, 1995,IV: 1942-1948.
  • 2Parsopoulos K E,Vrahatis M N. On the Computation of All GlobalMinimizers through Particle Swarm Optimization. IEEE Trans onEvolutionary Computation, 2004,8(3) : 211-224.
  • 3van den Bergh F,Engelbrecht A P. A Cooperative Approach to Par-ticle Swarm Optimization. IEEE Trans on Evolutionary Computa-tion, 2004, 8(3) : 225-239.
  • 4Lpvbjerg M,Rasmussen T K,Krink T. Hybrid Particle Swarm Opti-mizer with Breeding and Subpopulation // Proc of the Genetic andEvolutionary Computation Conference. San Francisco, USA, 2001 :469-476.
  • 5Suganthan P N. Particle Swarm Optimiser with Neighborhood Opera-tor // Proc of the Congress on Evolutionary Computation. Washing-ton, USA, 1999, IE: 1958-1962.
  • 6Kennedy J,Mendaes R. Neighborhood Topologies in Fully Informedand Best-of-Neighborhood Particle Swarms. IEEE Trans on Systems,Man and Cybernetics: Part C, 2006, 36(4) : 515-519.
  • 7Liang J J, Suganthan P N. Dynamic Multi-swarm Particle SwarmOptimizer // Proc of the IEEE Swarm Intelligence Symposium. Pa-sadena, USA, 2005: 124-129.
  • 8Shi Y H, Eberhart R C. Empirical Study of Particle Swarm Optimi-zation // Proc of the Congress on Evolutionary Computation. Wa-shington, USA, 1999, III: 1945-1950.
  • 9Ratnaweera A, Halgamuge S, Watson H C. Self-organizing Hierar-chical Particle Swarm Optimizer with Time-Varying Acceleration Co-efficients. IEEE Trans on Evolutionary Computation, 2004, 8 (3):240-255.
  • 10吕强,刘士荣,邱雪娜.基于信息素机制的粒子群优化算法的设计与实现[J].自动化学报,2009,35(11):1410-1419. 被引量:14

二级参考文献26

共引文献25

同被引文献69

引证文献10

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部