摘要
基于高斯核的支持向量机应用很广泛,高斯核参数σ的选择对分类器性能影响很大,本文提出了从核函数性质和几何距离角度来选择参数σ,并且利用高斯函数的麦克劳林展开解决了参数σ的优化选择问题.实验结果表明,该方法能较快地确定核函数参数σ,且SVM分类效果较好,解决了高斯核参数σ在实际应用中不易确定的问题.
Support vector machine based on Gaussian kernel has been used in many areas. The parameter σ of the Gaussian kernel has great impact on the performance of the classifier. This paper proposes an approach to choose an optimal parameterσbased on the properties of the kernel function and the angle of geometric distance. What is more, we have solved the problem of the optimal option of the parameter σ by means of the McLaughlin expansion of the Gaussian kernel function. The experiment results indicate that this method can get parameter σ very quickly and can achieve high efficiency. Thus the difficulty of the estimation of the parameterσcan be solved by our method.
出处
《计算机系统应用》
2014年第7期242-245,共4页
Computer Systems & Applications
基金
国家科技重大专项(2012ZX10004-301-609)
国家自然科学基金(61272472
61232018
61202404)
安徽省教学研究计划2010
关键词
支持向量机
高斯核
参数选择
几何距离
麦克劳林展开
support vector machine
Gaussian kernel
parameter selection
geometric distance
McLaughlin expansion