期刊文献+

求不定二次规划问题全局解的单调化方法

A Monotonic Optimization Approach for Solving Globally Generalized Quadratic Programming
原文传递
导出
摘要 不定二次规划是全局优化的一类重要问题,在金融、统计、工程设计等实际问题中有广泛应用。但此类问题可能存在多个非全局最优的局部极值点,所以求其全局最优解变得十分困难。运用单调优化理论提出一种求不定二次规划问题全局最优解的新方法:通过引入新变量将问题等价转化为单调优化问题,然后利用问题的单调结构进行缩减、分割、辅助问题最优值的定界等过程获得近似全局最优解。该解不仅可行且能充分接近真实的全局最优解,数值结果表明方法可行有效。 The generalized quadratic programming (GQP) is an important class of global optimization problems with wide applications in the fields of financial management, statistics and design engineering, with multiple local optimal solutions differing from the global solution. Thus, it is very difficult to obtain a global optimal solution for the GQP. Many solution methods were developed for globally solving the GQPs in a special form and the general form. However, these approaches may sometimes provide an infeasible solution, or one far from the true optimum. To overcome these limitations, a monotonic optimization approach is proposed for the GQP. In the approach, the original problem is first converted into an equivalent monotonic optimization problem, whose objective function is just a simple univariate by exploiting the particular features of this problem. Then, a range division and compression approach is used to reduce the range of each variable. Tightening variable bounds iteratively allows the proposed method to reach an approximate solution within an acceptable error by using monotonic functions, in which such solution is adequately guaranteed to be feasible and to be close to the actual global optimal solution. At last, several numerical examples are given to illustrate the feasibility and efficiency of the present algorithm.
出处 《科技导报》 CAS CSCD 北大核心 2014年第18期58-61,共4页 Science & Technology Review
基金 国家自然科学基金项目(11171094 11171368)
关键词 全局优化 不定二次规划 单调优化 global optimization generalized quadratic programming monotonic optimization
  • 相关文献

参考文献20

  • 1Horst R, Pardalos P M. Handbook of global optimization[M]. Boston: Kluwer Academic Publisher, 1975.
  • 2Kedem G, Watanabe H. Graph-optimization techniques for IC layout and compaction[J]. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 1984, 3(1): 12-20.
  • 3Stern R J, Wolkowicz H. Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations[J]. SIAM Journal Optimization, 1995, 5(2): 286-313.
  • 4Cambini R, Sodini C. Decomposition methods for solving noneonvex quadratic programs via branch and bound[J]. Journal of Global Optimization, 2005, 33(3): 313-336.
  • 5Li H M, Zhang K C. A decomposition algorithm for solving large-scale quadratic programming problems[J]. Applied Mathematics and Computation, 2006, 173(1): 394-403.
  • 6Qu S J, Yin H Y, Zhang K C. A global optimization algorithm using linear relaxation[J]. Applied Mathematics and Computation, 2006, 178(2): 510- 518.
  • 7Gao Y L, Xue H G, Shen P P. A new rectangle branch and reduce approach for solving nonconvex quadratic programming problems[J]. Applied Mathematics and Computation, 2005, 168(2): 1409-1418.
  • 8Anstreicher K M. Semidefinite programming versus the reformulation- linearization technique for nonconvex quadratically constrained quadratic programming[J]. Journal of Global Optimization, 2009, 43(2-3): 471-484.
  • 9Lu C, Fang S C, Jin Q, et al. KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems[J]. SIAM Journal on Optimization, 2011, 21 (4): 1475-1490.
  • 10Shi Z Y, Jin Q W. Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems[J]. Journal of Industrial and Management Optimization, 2014, 10(3): 871-882.

二级参考文献15

  • 1Horst R,Pardalos P M.Handbook of Global Optimization[M].Boston:Kluwer Academic Publishers,1975.
  • 2Pardalos P M,Rosen J B.Constrained Global Optimization:Algorithm and Applications[M].Berlin:Springer-Verlag,1987.
  • 3Goldfarb D,Liu S.An O(n3L) primal interior point algorithm for convex quadratic programming[J].Mahtematical Programming,1991,49:325-340.
  • 4Monteiro R C,Adler I.Interior path following primal-dual algorithm II:convex quadratic programming[J].Mahtematical Programming,1989,44:43-46.
  • 5Horst R,Tuy H.Global Optimization:Deterministic Approaches[M].Berlin:Springer-Verlag,1993.
  • 6Cambinil R, Sodinil C. Decomposition methods for solving nonconvex quadratic programs via branch and bound[J]. Journal of Global Optimization, 2005, 33(3): 313-336.
  • 7Hoai L T. An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints[J]. Mathematical Programming, 2000, 87(3): 401-426.
  • 8Li H M, Zhang K C. A decomposition algorithm for solving large-scale quadratic programming problems[J]. Applied Mathematics and Computation, 2006, 173(1): 394-403.
  • 9Vandenbussche D, Nemhauser G L. A branch-and-cut algorithm for nonconvex quadratic programs with box constraints[J]. Mathematical Programming, 2005, 102(3): 559-575.
  • 10Raber U. A simplicial branch-and-bound method for solving nonconvex all quadratic programs[J]. Journal of Global Optimization, 1998, 13(4): 417-432.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部