期刊文献+

混合放电臭氧发生器中臭氧产生过程的传热数值模拟 被引量:3

Numerical Stimulation of Heat Transfer in Ozone Generation from Multi-discharge Ozonator
下载PDF
导出
摘要 为揭示混合放电臭氧高效发生的电能转换和传热机理,采用有限体积法数值求解质量、动量和能量守恒方程,实现对混合放电臭氧发生进行传热分析,并实验验证了该方法的可行性。研究结果表明:气体进入两放电间隙后温度逐渐升高,且两放电间隙温度相差较大,内放电空间平均温度比外放电空间平均温度平均高6.38 K;中心电极、内电介质、外介电质和外电极各部分内部径向温差较小;混合放电仅36.14%的电能转换为热能,其中气体从3根放电管中携带的热量分别为9.85%,7.39%和4.78%,气体经过3根放电管后最高温度仅为313.2 K。混合放电电能转化率高、气体温度相对较低,是一种非常有前途的臭氧发生形式。 In order to understand the electrical energy conversion and the heat transfer mechanism in the multi-discharge ozone generation, we analyzed the heat transfer process by using the finite volume method to solve the mass, momentum, and energy conservation equations. The feasibility of this method was experimentally verified. The results show that after the gas flowing into the dual discharge gaps, the gas temperatures in the two gaps increase gradually and differ from each other greatly: the average temperature of the internal discharge gap is 6.38 K higher than that of the external discharge gap. However, there is only an inconspicuous difference among the radial temperatures of the central electrode, the internal dielectric, the external dielectric, and the external electrode. In this study, only 36.14% of the electrical energy has been converted into heat, including the energy loss caused by gas in the three tubes of 9.58%, 7.39%, and 4.78%, respectively. The maximal temperature of gas is only 313.2 K after it flows through three discharge tubes. Therefore, the multi-discharge ozone generation has a reasonably high valid conversion ratio of electrical energy as well as a relatively low reaction gas temperature; hence it is a promising way of generating ozone.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第6期1816-1821,共6页 High Voltage Engineering
基金 国家自然科学基金(11105067 51366012) 江西省青年科学家(井冈之星)培养对象计划(20133BCB23008)~~
关键词 混合放电 臭氧产生 传热 温度 数值模拟 电能转换 multi-discharge ozone generation heat transfer temperature numerical simulation electric energy conversion
  • 相关文献

参考文献20

  • 1魏林生,胡兆吉,王智化,岑可法.高频平板型介质阻挡放电臭氧产生的试验研究[J].高电压技术,2009,35(6):1397-1402. 被引量:16
  • 2张芝涛,白敏冬,赵艳辉,董克兵,宗旭.高浓度臭氧发生器放电特性实验研究[J].高电压技术,2003,29(5):33-35. 被引量:27
  • 3唐雄民,章云,朱燕飞.串联谐振式介质阻挡放电型臭氧发生器等效模型及电源特性分析[J].高电压技术,2012,38(5):1051-1058. 被引量:22
  • 4魏林生,谭志洪,胡兆吉.惰性气体对氧气介质阻挡放电臭氧生成的影响[J].高电压技术,2012,38(7):1608-1612.
  • 5陈波,杨学昌,陶顺忠.等离子喷涂介质层提升臭氧发生器性能的试验研究[J].高电压技术,2013,39(7):1703-1709. 被引量:8
  • 6Wei L S, Yuan D K, Zhang Y F, et al. The effect of inert gases on ozone generation using dielectric barrier discharge in dry air[J]. Ozone Science & Engineering, 2013, 35(6): 448-455.
  • 7Chang J S, Lawlwss P A, Yamamoto T. Corona discharge processes[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1152-1166.
  • 8Tamaribuchi H, Wang D, Namihira S, et al. Effect of pulse width on generation of ozone by pulsed streamer discharge[C]//IEEE Interna- tional Pulsed Power Conference. Albuquerque, USA: 1EEE, 2007: 407-410.
  • 9Takamura N, Matsumoto T, Wang D, et al. Ozone generation using positive- and negative- nano-seconds pulsed diseharge[C]//IEEE In- ternational Pulsed Power Conference. Chicaga, USA: IEEE, 2011: 1300-1303.
  • 10Yukiharu N, Toshikazu O, Seiji K, et al. Improvement of ozone yield by a silent-surface hybrid discharge ozonizer[J]. IEEE Transactions on Industry Applications, 1995, 31(6): 1458-1462.

二级参考文献89

共引文献68

同被引文献48

  • 1魏林生,谭志洪,胡兆吉.惰性气体对氧气介质阻挡放电臭氧生成的影响[J].高电压技术,2012,38(7):1608-1612.
  • 2魏林生,董国攀,章亚芳,等.SF6对介质阻挡放电臭氧生产的影响[J].高电压技术,2013,39(10):2520-2525.
  • 3Wei L S, Yuan D K, Zhang Y F, et al. The effect of inert gases on ozone generation using dielectric barrier discharge in dry air[J]. Ozone Science & Engineering, 2013, 35(6): 448-455.
  • 4Chang J S, Lawless P A, Yamamoto T. Corona discharge processes[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1152-1166.
  • 5Tamaribuchi H, Wang D, Namihira T, et al. Effect of pulse width on generation of ozone by pulsed streamer discharge[C]//IEEE International Pulsed Power Conference. Albuquerque, USA: IEEE, 2007: 407-410.
  • 6Takamura N, Matsumoto T, Wang D, et al. Ozone generation using positive-and negative-nano-seconds pulsed discharge[C]//IEEE International Pulsed Power Conference. Chicaga, USA: IEEE, 2011: 1300-1303.
  • 7Nomoto Y, Ohkubo T, Kanazawa S, et al. Improvement of ozone yield by a silent-surface hybrid discharge ozonizer[J]. IEEE Transactions on Industry Applications, 1995, 31(6): 1458-1462.
  • 8Hakiai K, Takazaki D, Ihara S, et al. Spatial distribution and characteristics of ozone generation with glow discharge using a double discharge method[J]. Japanese Journal of Applied Physics, 1999, 38(1A): 221-224.
  • 9Ma H B, Qiu Y C. A study of ozone synthesis in coaxial cylinder pulsed streamer corona discharge reactors[J]. Ozone Science & Engineering, 2003, 25(2): 127-135.
  • 10Ahn H S, Hayashai N, Ihara S, et al. Ozone generation characteristics by superimposed discharge in oxygen-fed ozonizer[J]. Japanese Journal of Applied Physics, 2003, 4200): 6578-6583.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部