期刊文献+

基于经验模态分解提取纹理的图像融合算法 被引量:5

Medical image fusion algorithm based on texture extraction by means of bidimensional empirical mode decomposition
下载PDF
导出
摘要 为了提升医学图像融合质量,采用了一种基于2维经验模态分解(BEMD)特征分类和复合型脉冲耦合神经网络的医学图像融合算法。首先将多模医学图像经过BEMD分解成2维内蕴模函数(BIMF)和残差项,然后分别将BIMF层和残差项值输入脉冲耦合神经网络(PCNN)中,得到各自的点火映射图,再将相同点火次数的像素提取归类,点火次数大的对应图像纹理,归为纹理类,其余归为背景类;统计各个纹理类集合中的像素极值确定灰度分布范围,最后将两幅图像中纹理类像素集合处于灰度分布范围的像素通过PCNN进行融合,其它像素通过双通道PCNN进行融合。结果表明,该算法解决了PCNN对偏暗图像的处理效果不理想的问题,与传统融合算法相比,性能具有优势,且能够较大幅度提高融合图像的质量。 In order to improve the quality of medical fusion images,a novel medical image fusion algorithm based on bidimensional empirical mode decomposition(BEMD) feature classification and multi-pulse coupled neural network was proposed.Firstly,the multimodal medical images were decomposed into two-dimensional intrinsic mode functions(BIMF)and the residuals by means of BEMD,and then the BIMF layer and the residuals coefficients were put into pulse coupled neural network(PCNN) to get their firing maps.The pixels with the same firing times were extracted and classified.The pixels with larger firing times were classified as texture and the rest were classified as the background.The extreme values of the texture collection were counted to determine the grayscale pixel distribution.Finally the pixels representing the texture were input into the PCNN and the other pixels were put into the dual-channel PCNN to get fusion coefficients.The experimental results show that the proposed algorithm has solved the problem of PCNN with superior performance comparing to the traditional fusion algorithms,which can improve the quality of the fused image.
出处 《激光技术》 CAS CSCD 北大核心 2014年第4期463-468,共6页 Laser Technology
基金 国家自然科学基金资助项目(61261028)
关键词 图像处理 医学图像融合 2维经验模态分解 2维内蕴模函数 脉冲耦合神经网络 特征提取 image processing medical image fusion bidimensional empirical mode decomposition bidimensional intrinsic mode functions pulse coupled neural network feature extraction
  • 相关文献

参考文献6

二级参考文献53

共引文献82

同被引文献48

  • 1赵刚,赵永强,潘泉,张学帅,张洪才.基于IHS与小波变换的多波段偏振图像融合[J].计算机测量与控制,2005,13(9):992-994. 被引量:5
  • 2崔玉平,郑胜,刘永才.基于向量机的红外小目标检测技术研究[J].红外与激光工程,2005,34(6):696-702. 被引量:9
  • 3魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 4姚鹏,叶学义,张文聪,庄镇泉,李斌.基于改进的Log-Gabor小波的虹膜识别算法[J].计算机辅助设计与图形学学报,2007,19(5):563-568. 被引量:16
  • 5王仪明,蔡吉飞,赵吉斌.高速胶印机关键技术研究现状及进展[J].中国机械工程,2007,18(10):1255-1259. 被引量:25
  • 6LI J F, GONG W G, LI W H, et al.Robust pedestrian detection in thermal infrared imagery using the wavelet transform [J].Infrared Physics & Technology, 2010, 53(4):267-273.
  • 7ZIN T T, TIN P, HIROMITSU H.Pedestrian detection based on hybrid features using near infrared images[J].International Journal of Innovative Computing Information and Control, 2011, 7(8): 5015-5025.
  • 8GENIN L, CHAMPAGNAT F, BESNERAIS G L.Single frame IR point target detection based on a Gaussian mixture model classification[C]//Electro-Optical and Infrared Systems: Technology and Applications Ⅸ.Edinburgh, United Kingdom: SPIE, 2012: 854111.
  • 9ELGUEBALY T, BOUGUILA N.Finite asymmetric generalized Gaussian mixture models learning for infrared object detection [J].Computer Vision and Image Understanding, 2013,117(12): 1659-1671.
  • 10LI Y, WANG J B, LU J J, et al.Single frame infrared image targets detection based on multi-mixture filters model[J].Advanced Materials Research, 2012, 486(3): 1389-1392.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部