期刊文献+

隐含因子在随机游走模型中的应用

Application of latent factor in random walk model
下载PDF
导出
摘要 研究了随机游走模型中转移概率矩阵的计算方法,并针对推荐系统中的随机游走模型,提出了一种基于隐含因子的方法来计算转移概率矩阵。这种方法通过矩阵分解的技术将随机游走模型中的节点映射为隐含因子向量,并使用该因子向量计算节点之间的转移概率。为了验证上述方法,针对具体的随机游走模型进行了实验,结果表明该方法不仅具有很好的稳定性,而且在数据集极端稀疏的情况下,也能有效地捕捉节点之间的转移概率,从而提高随机游走模型的推荐性能。 This paper studied the calculation methods of the transition probability matrix in random walk models. It proposed a method based on latent factors to obtain the transitive probability matrix of random walk models for the recommendation system. The method mapped the nodes in the random walk model to latent factor vectors through matrix factorization and computed the transitive probabilities between nodes using the vectors. A specific random walk model demonstrated the validity of the method. The experimental results show that the method has good stabilities and can improve the prediction performance of random walk model by effectively capturing the transitive probabilities between nodes especially when the data is extremely sparse.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期1989-1993,2012,共6页 Application Research of Computers
关键词 推荐系统 协同过滤 随机游走 矩阵分解 隐含因子 recommendation system collaborative filtering random walk matrix factorization latent factor
  • 相关文献

参考文献21

  • 1ADOMAVICIUS G, TUZHILIN A. Toward the next generation of re- commender systems: a survey of the state-of-the-art and possible ex- tensions[ J]. I EEE Trans on Knowledge and Data Engineering, 2005,17(6) :734-749.
  • 2GOLDBERG D, NICHOLS D, OKI B D, et al. Using collaborative filtering to weave an information tapestry [ J ]. Communications o| the ACM ,1992,35(12) :61-70.
  • 3SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collabo- rative filtering recommendation algorithms [ C ]//Proc of the 10th In- ternational Conference on World Wide Web. 2001:285-295.
  • 4KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems [ J ]. Computer,2009,42 ( 8 ) :30- 37.
  • 5SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization [ C ]//Advances in Neural Information Processing Systems. 2008.
  • 6KOREN Y. Faetorization meets the neighborhood: a muhifaeeted col- laborative filtering model [ C ]//Proc of the 14th ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining. New York : ACM Press ,2008:426-434.
  • 7RENDLE S. Faetorization machines[ C]//Proc of the 10th IEEE In- ternational Conference on Data Mining. [ S. 1. ] : IEEE Computer So- ciety, 2010 : 995 - 1000.
  • 8RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast con- text-aware recommendations with factorization machines [ C ]//Proe of the 34th International ACM SIGIR Conference on Research and Deve- lopment in Information. New York : ACM Press, 2011:635- 644.
  • 9CHEN Tian-qi, ZHENG Zhao, LU Qiu-xia, et al. Informative ensem- ble of multi-resolution dynamic factorization models [ C ]//Proc of KDD-Cup Workshop. 2011.
  • 10CHEN Tian-qi, TANG Lin-peng, LIU Qin, et al. Combining factori- zation model and additive forest for collaborative followee recommen- dation [ C ]//Proc of KDD-Cup Workshop. 2012.

二级参考文献24

  • 1Shen X,Boutell M,Luo J,Brown C.Multi-label machine learning and its application to semantic scene classification//Proceedings of the 2004 International Symposium on Electronic Imaging.San Jose,California,USA,2004:18-22.
  • 2Hullermeier E,Furnkranz J,Cheng W,Brinker K.Label ranking by learning pairwise preferences.Artificial Intelligence,2008,172(16):1897-1916.
  • 3Read J.A pruned problem transformation method for multi-label classification//Proceedings of the New Zealand Computer Science Research Student Conference.New Zealand,2008:143-150.
  • 4Tsoumakas G,Vlahavas I.Random k-labelsets:An ensemble method for multilabel classification//Proceedings of the ECML.Warsaw,Poland,2007:406-417.
  • 5Schapire R,Singer Y.BoosTexter:A boosting-based system for text categorization.Machine Learning,2000,39(2):135-168.
  • 6Zhang M,Zhou Z.Multilabel neural networks with applications to functional genomics and text categorization.IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351.
  • 7Zhang M,Zhou Z.A k-nearest neighbor based algorithm for multi-label classification//Proceedings of the IEEE International Conference on Granular Computing.Beijing,China,2005,2:718-721.
  • 8Clare A,King R.Knowledge discovery in multi-label phenotype data//Proceedings of the ECML/KDD.Freiburg,Germany,2001:42-53.
  • 9Tsoumakas G,Dimou A,Spyromitros E,Mezaris V,Kompatsiaris I,Vlahavas I.Correlation-based pruning of stacked binary relevance models for multi-label learning//Proceedings of the ECML/PKDD.Slovenia,2009:101.
  • 10Page L,Brin S,Motwani R,Winograd T.The pagerank citation ranking:Bringing order to the web//Proceedings of the ASIS.Orlando,FL,1998:161-172.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部