期刊文献+

车辆轨迹的增量式建模与在线异常检测 被引量:2

Incremental modeling and online anomaly detection of vehicle trajectories
下载PDF
导出
摘要 针对智能交通系统中车辆轨迹自动异常检测问题,提出一种基于批处理(batch-mode)模型初始化的增量式轨迹建模,并将其应用到在线异常检测。首先采用改进的Hausdorff距离和谱聚类对初始轨迹集进行分类并建立初始轨迹模型库;然后对提取的新轨迹进行在线异常检测以及轨迹识别,通过增量式(incremental)EM算法更新轨迹类别的隐马尔可夫模型参数;最后进行模型结构更新。户外实际场景监控视频实验结果表明,与经典的batch-mode算法相比,增量式轨迹建模可以得到更加准确的轨迹模型库、更快的运算速度,同时该算法在异常检测方面具有更高的检测率和更低的虚警率,实现了在线异常检测、具有对初始轨迹集不敏感的特点。 For vehicle trajectory automatic anomaly detection in intelligent transport system,this paper proposed an incremental trajectory modeling method based on batch-mode model initialize,and applied to online anomaly detection. Firstly,the proposed method utilized improved Hausdorff distance and spectral clustering algorithm to cluster the initial trajectories,and established the initial trajectory models. Then,it performed online anomaly detection and captured the trajectory class recognition once a new trajectory,and updated the hidden Markov model parameters with incremental EM algorithm. Finally it updated the model structure by trimming mixture component. Experiment on outdoor real world surveillance video demonstrates that,comparing with the classic batch-mode algorithm,incremental trajectory modeling can get more accurate trajectory models and faster speed. At the same time,the proposed algorithm has higher detection rate and lower false alarm rate. The algorithm realizes online anomaly detection and it is insensitive to the initial trajectories.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期2008-2012,共5页 Application Research of Computers
关键词 异常检测 增量式轨迹建模 谱聚类 隐马尔可夫模型 模型结构更新 anomaly detection incremental trajectory modeling spectral clustering hidden Markov model update the model structure
  • 相关文献

参考文献16

  • 1JIANG Fan, YUAN Jun-song, TSAFTARIS S A, et al. Anomalous video event detection using spatiotemporal context [ J ]. Computer Vi- f sion and Image Understanding, 2011,115 ( 3 ) : 323- 333.
  • 2YANG Wan-qi, GAO Yang, CAO Long-bing. TRASMIL: a local anomaly detection framework based on trajectory segmentation and multi-instance learning [ J ]. Computer Vision and Image Under- standing ,2013,117 (10) : 1273-1286.
  • 3LOY C C, XIANG Tao, GONG Shao-gang. Detecting and discrimi- nating behavioral anomalies[ J]. Pattern Recognition ,2011,44 ( 1 ) : 117-132.
  • 4SILLITO R R, FISHER R B. Semi-supervised learning for anomalous trajectory detection[ C ]//Proc of British Machine Vision Conference. Leeds : BMVA Press ,2008 : 1035-1044.
  • 5ZHANG Dong, GATICA-PEREZ D, BENGIO S, et al. Semi-super- vised adapted HMMs for unusual event detection [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recog- nition. Los Alamitos : IEEE Computer Society,2005 : 611 - 618.
  • 6李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 7BERTINI M, Del BIMBO A, SEIDENARI L. Multi-scale and real- time non-parametric approach for anomaly detection and localization[ J ]. Computer Vision and !mtge Understanding,20l 2,116 ( 3 ) : 320- 329.
  • 8XIANG Tao, GONG Shao-gang. Video behavior profiling for anomaly detection[ J]. IEEE Trans on Pattern Analysis and Machine Intel- ligence,2008,30 (5) :893-908.
  • 9NOCETI N, ODONE F. Learning common behaviors from large sets of unlabeled temporal series[ J]. Image and Vision Computing ,2012, 30( 11 ) :875-895.
  • 10KHALID S. Motion-based behavior learning, profiling and classifica- tion in the presence of anomalies[ J ]. Pattern Recognition, 2010, 43(1) :173-186.

二级参考文献1

共引文献29

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部