期刊文献+

迭代容积平方根粒子滤波 被引量:2

Iterated cubature square root particle filter
下载PDF
导出
摘要 为解决先验概率作为重要性密度函数因未融入最新的观测信息而造成测量精度低的问题,提出了迭代容积粒子滤波。此算法采用Gauss-Newton迭代和容积卡尔曼滤波设计重要性密度函数,在迭代过程中不断修改新息的方差和协方差,使重要性密度函数更接近后验概率密度。此外,为确保状态协方差矩阵的正定性,采用了平方根滤波的思想,通过正交三角分解来代替每次迭代的矩阵开方操作。仿真实验证明,此算法可以提高滤波精度,适用于对精度要求很高但对运算时间要求不是很高的场合。 In order to solve the problem that the transition prior distribution as an importance density function does not include the lastest measuring information and only apply on the place of low precision,this paper proposed new particle filter named iterated cubature particle filter(ICPF). The new algorithm developed the importance density function by Gauss-Newton iterate method and cubature Kalman filter(CKF),the importance density function was more approximate the posterior density function because of improved innovation covariance and cross-covariance in the process of iteration. In addition,to ensure the positive definiteness of the state covariance matrix,it insteaded matrix square root operation in each iteration by orthogonal triangular decomposition for the use square root filtering. The simulation results indicate that the new algorithm can improve the accuracy of filter and is suitable for the situation that pay more attention to accuracy than time.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期2021-2023,2026,共4页 Application Research of Computers
关键词 粒子滤波 迭代 容积 平方根 重要性密度函数 particle filter iterate cubature square root importance density function
  • 相关文献

参考文献10

  • 1GREWAL M S, ANDREWS A P. Kalman filtering: theory and prac- tice using MATLAB [ M ]. New York: Wiley,2001:169-200.
  • 2JULIER S J, UHLMANN J K, DURRANT H F. A new method for the nonlinear transformation of means and covariances in filters and estimations [ J]. IEEE Trans on Automatic Control, 2000,45 (3) : 472-482.
  • 3ARASARATNAM I, HAYKIN S. Cubature Kalman filters[ J]. IEEE Trans on Automatic Control,2009,54 (6) : 1254-1269.
  • 4SAHA S, GUSTAFSSON F. Particle filtering with dependem noise processes[ J]. Signal Processing ,2012,60(9 ) :4497-4508.
  • 5De FREITAS J F G, NIRANJAN M, GEE A H, et al. Sequential Monte Carlo methods to train neural network models [ J]. Neural Computation, 2000,12 ( 4 ) : 955-993.
  • 6Van Der MERWE R,DOUCET A,De FREITAS N ,et al. The unscent- ed particle filter,CUED/F-INFEN G/TR 380 [ R]. Cambridge, UK: Cambridge University Press,2000 : 1-45.
  • 7NORGAARD M, POULSEN N K, RAVN O. New developments in state estimation for nonlinears systems [ J ]. Automatica, 2000,36 ( ll ) :1627-1638.
  • 8孙枫,唐李军.Cubature粒子滤波[J].系统工程与电子技术,2011,33(11):2554-2557. 被引量:35
  • 9梁楠,郭雷,王瀛.基于改进粒子滤波的目标跟踪算法[J].西安工业大学学报,2012,32(1):15-18. 被引量:1
  • 10Van Der MERWE R, WAN E A. The square-root unscented Kahnan filter for state and parameter estimation [ C ]//Proc of IEEE Interna- tional Conference on ICASSP. 2001:3461-3464.

二级参考文献23

  • 1康莉,谢维信,黄敬雄.基于unscented粒子滤波的红外弱小目标跟踪[J].系统工程与电子技术,2007,29(1):1-4. 被引量:9
  • 2吕娜,冯祖仁.非线性交互粒子滤波算法[J].控制与决策,2007,22(4):378-383. 被引量:12
  • 3Julier S, Uhlmann J. A new method for the nonlinear transformation of means and covariance in filters and estimators [J]. IEEE Trans. on Automatic Control, 2000,45(3) :477 - 482.
  • 4Arasaratnam I, Haykin S. Cubature Kalman filter[J] . IEEE Trans. on Automatic Control, 2009,54(6) : 1254 - 1269.
  • 5Carpenter J, Clifford P, Fearnhead P. Improved particle for nonlinear problem[J]. IEEE Proceedings of Radar Sonar Navigation, 1999,146 (1) : 1-7.
  • 6Vandermerwe R, Doucet A, Defreitas N, et al. The unscented particle filter[R]. Technical Report CUED/F-INFEG/TR 380, Cambridge University Engineering Department, 2000.
  • 7Gordon N J. Novel approach to nonlinear/ non Gaussian Bayesian state estimation[J]. IEEE Proceedings-F, 1993,140(2) : 107 - 113.
  • 8Beadle E R. A fast weighted Bayesian bootstrap filter for nonlinear model state estimation[J]. IEEE Trans. on Aerospace and Electronic Systems, 1997,33(1) : 338 - 343.
  • 9Liu J S, Chen R. Sequential Monte Carlo methods for dynamic systems[J]. Journal of the American Statistical Association, 1998,93(443) : 1032 - 1044.
  • 10Berzuini C, Best N G, Gilks W R, et al. Dynamic conditional independence models and Markov chain Monte Carlo methods[J]. Journal of the American Statistical Association, 1997, 92 (440):1403 - 1412.

共引文献34

同被引文献22

  • 1郭文艳,韩崇昭,雷明.迭代无迹Kalman粒子滤波的建议分布[J].清华大学学报(自然科学版),2007,47(z2):1866-1869. 被引量:10
  • 2何英姿,谌颖,韩冬.基于交会雷达测量的相对导航滤波器[J].航天控制,2004,22(6):17-20. 被引量:12
  • 3陈韵,周军.基于激光雷达测量的空间交会对接相对导航[J].航天控制,2006,24(1):24-28. 被引量:4
  • 4Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[ J] IEE Proceedings F Radar and Signal Processing, 1993,140 (2).
  • 5De Freitas N, Niranjan M, Gee A H, et al. Sequential Monte Carlo methods to train neural network models [ J ]. Neural Computation,2000,12 (4) :955 - 993.
  • 6Van der Merwe R, Douce A, De Freitas N, et al. The un- scented particle filter [ R ]. Cambridge, UK: Engineering De- partment, Cambridge University,2000 : 1 - 45.
  • 7Wu Y X, Hu D W, Wu M P, et al. A numerical-integration perspective on Gaussian filters[J]. IEEE Transactions on Signal Processing, 2006,54 ( 8 ) : 2910 - 2921.
  • 8Arasaratnam I, Haykin S. Cubature Kalman filters [ J ]. IEEE Transactions on Automatic Control ,2009,54 (6).
  • 9Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations [ J ]. IEEE Transactions on Signal Processing ,2010,58 ( 10 ).
  • 10Andrieu C, Djuric P M, Doucet A. Model selection by MC- MC computation [ J ]. Signal Processing,2001,81 ( 1 ).

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部