期刊文献+

时变时滞混沌神经网络的采样同步 被引量:1

Sampled-data synchronization for chaotic neural networks with time-varying delays
下载PDF
导出
摘要 研究了时变时滞混沌神经网络的采样同步问题。根据Lyapunov稳定性理论和输入延迟方法构造了新的Lyapunov泛函,得到了基于LMIs(线性矩阵不等式)形式且保守性更小的同步准则。通过MATLAB软件求解LMIs,得到了合理的采样控制器,使得该混沌神经网络在较大的采样间隔达到同步。数值仿真表明了该方法的优越性和有效性。 This paper investigated the problem of sampled-data synchronization for chaotic neural networks with time-varying delays. Based on the Lyapunov stability theory and the input delay method,it constructed a new Lyapunov functional. It exhibited the less conservative synchronization criterion in terms of LMIs(linear matrix inequalities). Through utilizing the MATLAB software to solve LMIs,it can obtain the desired sampled-data controller and ensure the synchronization of the chaotic system under a bigger sampling interval. Besides,numerical simulations show the advantage and effectiveness of the proposed method.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期2040-2043,2047,共5页 Application Research of Computers
关键词 神经网络 采样同步 LYAPUNOV泛函 线性矩阵不等式 neural networks sampled-data synchronization Lyapunov functional LMIs(linear matrix inequalities)
  • 相关文献

参考文献17

  • 1张芬,张艳邦.滞后神经网络新的时滞相关无源判定准则[J].计算机应用研究,2012,29(6):2085-2089. 被引量:1
  • 2LU Jian-quan, HOD W C, LIU Ming. Globally exponential synchro- nization in an array of asymmetric coupled neural networks[ J]. Phy- sics Letters A, 2007,369(5-8) : 444-451.
  • 3WU Wei, CHEN Tian-ping. Global synchronization criteria of linearly coupled neural network systems with time-varying coupling[J]. IEEE Trans on Neural Natworks, 2008, 19(2) : 319-332.
  • 4DING Wei, HAN Mao-an, LI Mei-li. Exponential lag synchronization of delayed fuzzy cellular neural networks with impulses [ J ]. Physics Letters A, 2009,373(8-9) :832-837.
  • 5GAN Qin-tao. Synehronisation of chaotic neural networks with un- known parameters and random time-varying delays based on adaptive sampled-data control and parameter identification [ J ]. lET Control Theory & Application, 2012,6(10) : 1508-1515.
  • 6LIU Xi-wei. Synchronization of linearly coupled neural networks with reaction-diffusion terms and unbounded time delays[ J]. Neurocom- puting, 2010,73(13-15) : 2681-2688.
  • 7ZHANG Chuan-ke, HE Yong, WU Min. Exponential synchronization of neural networks with time-varying mixed delays and sampled-data [J]. Neurocomputing, 2010, 74(1-3): 265-273.
  • 8PECORA L M, CARROLL T. Synchronization in chaotic systems [ J ]. Physical Review Letters,1990,64(8) : 821-824.
  • 9JIANG Guo-ping, ZHENG Wei-xing, TANG W K, et al. Integral-ob- server-based chaos synchronization [ J]. IEEE Trans on Circuits and Systems li, Express Briefs, 2006,53 (2) : 110-114.
  • 10CAO Jin-de, LU Jian-quan. Adaptive synchronization of neural net- works with or without time-varying delays[ J]. Chaos,2006,16 ( 1 ) : 013133.

二级参考文献29

  • 1LI Tao, GUO Lei, SUN Chang-yin. Further resuh on asymptotic stability criterion of neural networks with time-varying delays[ J]. Neurocomputing ,2007,71 ( 1-3 ) :439-447.
  • 2CAO Jin-de. Global asymptotic stability of neural networks with transmission delays [ J]. International JournaJ of Systems Science, 2000,31 (10) :1313-1316.
  • 3HE Yong, LIU G P, REES D, et al. Stability analysis for neural networks with time-varying interval delay [ J ]. IEEE Trans on Neural Networks,2007,38 ( 6 ) : 1850-1854.
  • 4LI Tao, GUO Lei, LIN Chang, et al. New results on global asymptotic stability analysis for neural networks with time-varying delays[J]. Nonlinear Analysis: Real World Applications,2009,10 ( 1 ) : 554- 562.
  • 5KWON O M, PARK J H. Improved delay-dependent stability criterion for neural networks with time-varying delays[ J]. Physics Letters A,2009,373(5 ) :529-535.
  • 6ZHANG Yi-jun, YUE Dong, TIAN E. New stability criteria of neural networks with interval time-varying delay: a piecewise delay method [J]. Applied Mathematics and Computation, 2009,208 ( 1 ): 249 - 259.
  • 7YUE Dong, HAN Qing-long, LAM J. Network-based robust H∞ control of systems with uncertainty[J]. Automatica,2005,43 (6) :999- 1007.
  • 8SONG Qian-kun, ZHAO Zhen-jiang, LI Yong-min. Global exponential stability of BAM neural networks with distributed delays and reaction diffusion terms[J]. Physics Letters A,2005,335(2-3) :213-225.
  • 9ZHANG Fen, ZHANG Yan-bang. Novel delay-dependent stability criteria for delayed neural networks [ C ]//Proc of the 2rid International Conference on Intelligent Control and Information Processing. 2011 : 702 - 707.
  • 10ZAMES G. On the input-output stability of time-varying nonlinearfeedback systems[J]. IEEE Trans on Automatic Control,1966,11 (2) : 228-239.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部