摘要
研究了时变时滞混沌神经网络的采样同步问题。根据Lyapunov稳定性理论和输入延迟方法构造了新的Lyapunov泛函,得到了基于LMIs(线性矩阵不等式)形式且保守性更小的同步准则。通过MATLAB软件求解LMIs,得到了合理的采样控制器,使得该混沌神经网络在较大的采样间隔达到同步。数值仿真表明了该方法的优越性和有效性。
This paper investigated the problem of sampled-data synchronization for chaotic neural networks with time-varying delays. Based on the Lyapunov stability theory and the input delay method,it constructed a new Lyapunov functional. It exhibited the less conservative synchronization criterion in terms of LMIs(linear matrix inequalities). Through utilizing the MATLAB software to solve LMIs,it can obtain the desired sampled-data controller and ensure the synchronization of the chaotic system under a bigger sampling interval. Besides,numerical simulations show the advantage and effectiveness of the proposed method.
出处
《计算机应用研究》
CSCD
北大核心
2014年第7期2040-2043,2047,共5页
Application Research of Computers
关键词
神经网络
采样同步
LYAPUNOV泛函
线性矩阵不等式
neural networks
sampled-data synchronization
Lyapunov functional
LMIs(linear matrix inequalities)