期刊文献+

数据库理论教学中关联规则与函数依赖之间联系的探讨 被引量:3

Research of relationship between functional dependency and association rules in database theory teaching
下载PDF
导出
摘要 针对Apriori算法必须耗费大量的时间来处理规模巨大的候选项目集等问题,提出一种基于数据依赖的关联规则挖掘算法ARMAFD。该算法利用函数依赖所隐含的属性间联系来缩小候选项目集的规模,提高了算法的效率,丰富了函数依赖的教学内涵,同时也为关联规则的挖掘提供了一种新的途径。实验结果表明ARMAFD算法是有效可行的。 To solve the problems that the Apriori algorithm must spend a lot of time to deal with the large of candidate item sets,this paper put forward a mining algorithm of association rules based on functional dependency. The algorithm made use of the implicit relationship between attributes,which could shrink the scale of candidate item sets and improve the efficiency of the algorithm. The method might enrich the teaching connotation of functional dependency,and provide a new way of mining association rules. The experiments show that the algorithm is efficient.
出处 《计算机应用研究》 CSCD 北大核心 2014年第7期2085-2087,共3页 Application Research of Computers
基金 江苏省科技型企业技术创新资金资助项目(BC2012201) 国家自然科学基金资助项目(71271117)
关键词 函数依赖 关联规则 联系 教学内涵 functional dependency association rules relationship teaching connotation
  • 相关文献

参考文献8

  • 1叶小平.数据库系统教程[M].北京:清华大学出版社,2012.
  • 2AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large database[ C ]//Proc of ACM SIGMOD International Conference on Management of Data. 1993:207-216.
  • 3刘以安,羊斌.关联规则挖掘中对Apriori算法的一种改进研究[J].计算机应用,2007,27(2):418-420. 被引量:53
  • 4毛宇星,陈彤兵,施伯乐.一种高效的多层和概化关联规则挖掘方法[J].软件学报,2011,22(12):2965-2980. 被引量:37
  • 5李广原,杨炳儒,周如旗.一种基于约束的关联规则挖掘算法[J].计算机科学,2012,39(1):244-247. 被引量:11
  • 6MEDINA R, NOURINE L. A Unified hierarchy for functional depen- dencies, conditional functional dependencies and association rules [ C ]//Proc of the 7th International Conference on Formal Concept A- nalysis. 2009:98-113.
  • 7ALLARD P,FERR S, NOURINE L. Discovering functional dependen- cies and association rules by navigating in a lattice of OLAP views [ C ]//Proc of the 7th International Conference on Concept Lattices and Their Applications. 2010 : 199-210.
  • 8AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules [ C ]//Proc of the 20th International Conference on VLDB. 1994: 487-499.

二级参考文献34

  • 1皮德常,秦小麟,王宁生.基于动态剪枝的关联规则挖掘算法[J].小型微型计算机系统,2004,25(10):1850-1852. 被引量:16
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). Santiago, 1994. 487-499.
  • 3Zaki MJ. Scalable algorithms for association mining. IEEE Trans. on Knowledge and Data Engineering (TKDE), 2000.12(3): 372-373. [doi: 10.1109/69.846291].
  • 4Han J, Pei J, Yin YW. Mining frequent patterns without candidate generation. In: Proe. of the ACM Annual Conf. on Management of Data (SIGMOD). 2000. 1-12. [doi: 10.1145/342009.335372].
  • 5Liu GM, Lu HJ, Lou WW, Xu YB, Yu JX. Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Mining and Knowledge Discovery (DMKD), 2004,9(3):249-274. [doi: 10.1023/B:DAMI.0000041128.59011.53].
  • 6Han JW, Fu YQ. Discovery of multiple-level association rules from large databases. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). 1995.420-431.
  • 7Srikant R, Agrawal R. Mining generalized association rules. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). 1995. 407-419.
  • 8Hipp J, Myka A, Wirth R, Guntzer U. A new algorithm for faster mining of generalized association rules. In: Proc. of the European Syrup. on Principles of Data Mining and Knowledge Discovery (PKDD). 1998.74-82. [doi: 10.1007/BFb0094807].
  • 9Sriphaew K, Theeramunkong T. Fast algorithm for mining generalized frequent patterns of generalized association rules. IEICE Trans. on Information and Systems (TOIS), 2004,E87-D(3):761-770.
  • 10Pramudiono I, Kitsuregawa M. FP-Tax: Tree structure based generalized association rule mining. In: Proc. of the ACM Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD). 2004. 60-63.

共引文献94

同被引文献27

  • 1曹步文,刘先锋,汤小康.数据挖掘技术——聚类算法研究[J].计算机与现代化,2006(11):1-4. 被引量:4
  • 2Bohannon P, Fan W, Geerts F, et al. Conditional functional dependencies for data cleaning[C]// IEEE 23rd International Conference on Data Engineering. 2007:746-755.
  • 3Fan Wenfei, Geerts F, Li Jianzhong, et al. Discovering conditional functional dependencies[J]. IEEE Transactions on Knowledge and Data Engineering, 2011,23(5):683-698.
  • 4Fan Wenfei, Geerts F, Jia Xibei, et al. Conditional functional dependencies for capturing data inconsistencies[J]. ACM Transactions on Database Systems(TODS), 2008,33(2):No. 6.
  • 5Li Jiuyong, Liu Jixue, Toivonen H, et al. Effective pruning for the discovery of conditional functional dependencies[J]. The Computer Journal, 2013,56(3):378-392.
  • 6Diallo T, Novelli N, Petit J M. Discovering (frequent) constant conditional functional dependencies[J].International Journal of Data Mining, Modelling and Management, 2012,4(3):205-223.
  • 7Yeh P Z, Puri C A. Discovering conditional functional dependencies to detect data inconsistencies[C]//Proc. of the 36th International Conference on Very Large Data Bases. 2010:256-270.
  • 8韩京宇,徐立臻,董逸生.数据质量研究综述[J].计算机科学,2008,35(2):1-5. 被引量:102
  • 9胡艳丽,张维明.条件依赖理论及其应用展望[J].计算机科学,2009,36(12):115-118. 被引量:8
  • 10程珩,赵远.工作模态分析在减速器监测和诊断中的应用[J].振动.测试与诊断,2010,30(2):197-200. 被引量:6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部