期刊文献+

硅石焙烧-酸浸提纯及杂质相结构的演变 被引量:3

Purification of Silica by Roasting-Acid Leaching and Transformation of Metallic Impurity Phases
原文传递
导出
摘要 在硅石提纯过程中,采用XRD和EDS分析硅石中杂质元素赋存特征,采用高温焙烧活化与酸浸复合提纯方法研究了酸浸过程杂质相结构演变及提纯效果.结果表明,硅石中不同类型铝硅酸盐的K,Na,Ca,Al,Si含量不同,主要分为长石类、伊利石和高岭石;酸浸提纯过程中硅石的杂质相不仅会溶解在酸中,且长石类杂质相会演变成伊利石和高岭石.与未预酸浸的硅石提纯相比,预酸浸的硅石经高温焙烧活化提纯后纯度达99.995%,达到高纯石英砂的纯度,杂质Al和K含量分别降低了76.6%和66.5%;在700℃下焙烧,预酸浸硅石的Al和K去除效果最好,去除率分别为85%和41%. In the purification process of silica, XRD and EDS are applied to analyze the existing characteristics of impurities in silica, and a combined purification method of acid leaching and high-temperature roasting is adopted to study the transformation of impurity phases during acid leaching, and the combined purification effect. The results show that the main phases of aluminosilicate are feldspar, illite and kaolinite based on their different contents of elements such as K, Na, Ca, Al and Si. Not only the impurity phases are dissolved in acids, but also the feldspar impurity phases are changed into illite and kaolinite. The purity of silica after pre-acid leaching and high-temperature activation can reach up to 99.995%, and the contents of Al and K in it with pre-acid leaching are decreased by 76.6% and 66.5%, respectively, compared with its purification without pre-acid leaching. High-temperature roasting at 700℃ can obtain the best effect for removal of Al and K as impurity elements in pre-acid leached silica at the removal rates of 85% and 41%, respectively.
出处 《过程工程学报》 CAS CSCD 北大核心 2014年第3期450-455,共6页 The Chinese Journal of Process Engineering
关键词 硅石 提纯 酸洗 高温活化 结构演变 silica purification acid leaching high-temperature roasting structural transformation
  • 相关文献

参考文献14

  • 1Kemmochi K, Kiyotaka M, Hiroyuki M. High-purity Quartz Glass and Method for the Preparation Thereof [P]. US Pat.: US5968259A, 1999-10-19.
  • 2Werner P, Tatsuhiro S, Hiroyuki W. Process for Continuous Refming of Quartz Powder [P]. US Pat.: US5637284A, 1997-06-12.
  • 3Shehu N, Spaziani E. Separation of Feldspar from Quartz Using EDTA as Modifier [J]. Miner. Eng., 1999, 12(11): 1393-1397.
  • 4Andrade S, Hypolito R, Horstpeter H. Iron(11) Oxide Determination in Rocks and Minerals [J]. Chem. Geol., 2002, 182(1): 85-89.
  • 5赵洪力,郑世阳,张万庆.强磁选机用于石英砂除铁效果的比较[J].非金属矿,2005,28(3):39-41. 被引量:15
  • 6Vidyadhar A, Hanumantha K R. Adsorption Mechanism of Mixed Cationic/Anionic Collectors in Feldspar-Quartz Flotation System [J]. J. Colloid Interface Sci., 2007, 306(2): 195-204.
  • 7张福存,李小静,周岳远.石英砂精制试验研究[J].非金属矿,2003,26(2):45-47. 被引量:12
  • 8向廷生,蔡春芳,付华娥.不同温度、羧酸溶液中长石溶解模拟实验[J].沉积学报,2004,22(4):597-602. 被引量:52
  • 9Blaker R E, Walter L M. Kinetics of Feldspar and Quartz Dissolution at 70-80 ℃ and near Neutral pH: Effects of Organic Acids and NaC1 [J]. Geochim. Cosmochim. Acta, 1999, 63(13/14): 2043-2059.
  • 10Khalifa M, Hajji M, Ezzaouia H. An Efficient Method Combining Thermal Annealing and Acid Leaching for Impurities Removal from Silica Intended for Photovoltaic Application [J]. Bull. Mater. Sci., 2013, 36(6): 1097-1101.

二级参考文献64

共引文献136

同被引文献329

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部