期刊文献+

二维Tsallis熵在图像阈值分割中的应用 被引量:8

Application of two dimensional Tsallis entropy in image thresholding segmentation
下载PDF
导出
摘要 通过计算图像二维直方图的非广延Tsallis熵,可以在去噪声的同时获取图像内部长程关联强度的信息。针对仅存在局域长程关联的红外线图片和无损检测图片,提出一种新的二维Tsallis熵判据,该方法把目标和背景当成相互独立的部分,能够最大限度保留二者各自信息的完整性。实验结果表明:该方法对非广延参数q的响应敏感度明显优于全局性长程关联假设下的方法,并且可对图像内部的局域长程关联进行定量描述。 By calculating nonextensive Tsallis entropy of two dimensional histogram of image,one can obtain intensity information of long-range correlation within image as well as denoising.A novel two dimensional Tsallis entropy criterion is proposed,aiming at those images presenting local long-range correlations,such as infrared ones and nondestructive test ones,in which object and background can be considered as two independent parts and information integrity of them can be maximized reserved by the proposed method.Experimental results show that the proposed method is more sensitive to nonextensive parameter q than that considering global long-range correlation,therefore,local long-range correlation hypothesis can be described quantitatively.
出处 《传感器与微系统》 CSCD 北大核心 2014年第7期150-153,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(11005041) 福建省高校杰出青年科研人才培育计划资助项目(JA12001) 华侨大学中青年教师科研提升计划资助项目(ZQN-PY114)
关键词 图像分割 TSALLIS熵 长程关联 image segmentation Tsallis entropy long-range correlation
  • 相关文献

参考文献11

  • 1Otsu N.A threshold selection method from gray-level histograms[J].Automatica,1975,11(285-296):23-27.
  • 2Kapur J N,Sahoo P K,Wong A K C.A new method for gray-level picture thresholding using the entropy of the histogram[J].Computer vision,graphics,and image processing,1985,29(3):273-285.
  • 3Abutaleb A S.Automatic thresholding of gray-level pictures using two-dimensional entropy[J].Computer Vision,Graphics and Image Processing,1989,47(1):22-32.
  • 4Brink A D.Thresholding of digital images using two-dimensional entropies[J].Pattern Recognition,1992,25(8):803-808.
  • 5Pathria R K.Statistical mechanics[M].Oxford:Perganon Press,1972.
  • 6Tsallis C.Possible generalization of Boltzmann-Gibbs statistics[J].Journal of Statistical Physics,1988,52(1-2):479-487.
  • 7Sahoo P K,Arora G.Image thresholding using two-dimensional Tsallis-Havrda-Charvát entropy[J].Pattern Recognition Letters,2006,27(6):520-528.
  • 8程淑红,胡春海.利用最小Tsallis交叉熵的视频对象分割算法[J].红外与激光工程,2011,40(3):559-563. 被引量:3
  • 9吴一全,潘喆,吴文怡.二维直方图斜分Tsallis–Havrda–Charvát熵图像阈值分割[J].光电工程,2008,35(7):53-58. 被引量:17
  • 10La Porta A,Voth G A,Crawford A M,et al.Fluid particle accelerations in fully developed turbulence[J].Nature,2001,409(6823):1017-1019.

二级参考文献17

  • 1吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(一)[J].数据采集与处理,1993,8(3):193-201. 被引量:145
  • 2吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 3龚坚,李立源,陈维南.二维熵阈值分割的快速算法[J].东南大学学报(自然科学版),1996,26(4):31-36. 被引量:51
  • 4杨晖.图像分割的阈值法研究[J].辽宁大学学报(自然科学版),2006,33(2):135-137. 被引量:45
  • 5Oboukhova N A. Automatic segmentation and tracking of objects in video computer system [C]// IEEE Tenth International Symposium on Consumer Electronics, 2006: 1-4.
  • 6Porikli Fatih. Automatic video object segmentation using volume growing and hierarchical clustering [J]. Journal on Applied Signal Processing, 2004(6):814-832.
  • 7Bailo G, Bariani M, Ijas P, et al. Background estimation with Gaussian distribution for image segmentation a fast approach [C]//Proceedings of the 2005 IEEE International Workshop on Measurement Systems for Homeland Security, Contraband Detection and Personal Safety Workshop, 2005: 2-5.
  • 8Chien Shaoyi, Huang Yuwen. Predictive watershed: a fast watershed algorithm for video segmentation [J]. lEE Trans Circuits Syst Video Technol, 2003, 13(5): 453-461.
  • 9Poftes de Albuquerque M, Esquef I A, Gesualdi Mello A R, et al. Image thresholding using Tsallis entropy [J]. Pattern Recognition Letters, 2004, 25(9):1059-1065.
  • 10Fufuichi S. Fundamental properties on Tsallis entropy [J]. Journal of Physics: Condensed, 2005, 4: 1-12.

共引文献18

同被引文献79

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部