期刊文献+

一类传染病模型无病平衡点的全局稳定性 被引量:3

The global stability of a class of infectious disease model for the disease free equilibrium
下载PDF
导出
摘要 过去的半个多世纪,传染病模型在数学生态学领域已受广泛重视.研究了一个具时滞和扩散的传染病模型,重点讨论了该模型解的定性性质和稳态解的渐近行为;利用线性化和特征值方法讨论了正稳态解的局部稳定性,通过构造单调迭代序列,给出了正稳态解的全局稳定性.最后给出了数值模拟和讨论,当接触率充分小时,问题的无病平衡点是全局渐近稳定的. Over the past half century, infectious disease model has attracted great attention in mathematical ecology. People use mathematical tools to research the causes of disease, the development process of the disease, and provide the theoretical basis and quantitative basis for the decision of the prevention and treatment. Focusing on the qualitative properties of solutions of the model, an infectious disease model with time delay and diffusion is given. We mainly discuss the asymptotic behavior of the solution: Linearization and eigenvalue methods are used to discuss the local stability of the positive steady-state solutions; Through constructing monotone iterative sequences, the global stability of positive steady-state solutions are given. Numerical simulation and some discussions are given to emphasize our results: Free equilibrium is globally asymptotically stable when the contact rate of the disease is small.
作者 夏立标
出处 《浙江大学学报(理学版)》 CAS CSCD 2014年第4期391-398,405,共9页 Journal of Zhejiang University(Science Edition)
关键词 传染病模型 无病平衡点 时滞 全局稳定性 线性化 特征值方法 infectious disease model the disease free equilibrium delay global stability linearity eigenvalue method
  • 相关文献

参考文献8

  • 1马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1994.41-45.
  • 2夏立标.一类传染病模型的全局解[J].浙江大学学报(理学版),2010,37(5):489-492. 被引量:2
  • 3PAO C V. Nonlinear Parabolic and Elliptic Equations [M]. New York/London: Plenum,1992.
  • 4MA Wanbiao, SONG Mei. Global stability of an SIR epidemic model with time delay[J]. Applied Mathemat- ics Letters,2004,17(10): 1141-1145.
  • 5BERETTA E, HARA T, MA W, et al. Global as- ymptotic stability of an SIR epidemic model with dis- tributed time delay [J ]. Nonlinear Anal, 2001,47 (6) : 4107-4115.
  • 6HETHCOTE H W. The mathematics of infectious dis- eases[J]. SIAM Review, 2000,42 : 599-653.
  • 7PANG P Y H, WANG M X. Straegy and stationary pattern in a three-species predator-prey model[J]. J Differential Equations, 2004,200 : 245-273.
  • 8WU J H. Theory and Applications of Partial Function- al Differential Equations[M]. New York: Springer- Verlag, 1996.

二级参考文献6

  • 1张少林,朱婉珍.具有阶段结构的连续时滞生态系统的一致生存与全局渐近稳定性[J].浙江大学学报(理学版),2006,33(4):376-378. 被引量:10
  • 2PANG P Y H,WANG M X.Straegy and stationary pattern in a three-species predator-prey model[J].J Differential Equations,2004,200:245-273.
  • 3PAO C V.Nonlinear Parabolic and Elliptic Equations[M].New York/London:Plenum,1992.
  • 4MA Wan-biao,SONG Mei.Global stability of an SIR epidemic model with time delay[J].Applied Mathematics Letters,2004,17:1141-1145.
  • 5BERETTA E,HARA T,MA W,et al.Global asymptotic stability of an SIR epidemic model with distributed time delay[J].Nonlinear Anal,2001,47:4107-4115.
  • 6HETHCOTE H W.The mathematics of infectious diseases[J].SIAM Review,2000,42:599-653.

共引文献23

同被引文献26

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部