期刊文献+

铜改性分子筛的低温NH_3-SCR性能研究 被引量:3

NH_3-SCR performance over different types of Cu modified zeolites at low temperature
下载PDF
导出
摘要 采用浸渍法制备了Cu-ZSM-5、Cu-beta、Cu-USY和Cu-SAPO-34四种铜改性分子筛催化剂,并评价了各个催化剂的NH3选择性催化还原(NH3-SCR)性能,同时通过X射线衍射(XRD)、H2程序升温还原(H2-TPR)、CO吸附红外(CO-DRIFTS)、原位红外(In-situ FTIR)等实验技术研究了不同Cu-zeolite催化剂的物理化学性质及其对NH3-SCR性能的影响.结果表明,Cu-ZSM-5和Cu-beta在150℃时NO转化率可达到80%左右,表现出优异的低温活性,并且催化剂的温度窗口很宽,在170~400℃内都能够将NO完全转化.这很可能与这2种催化剂拥有较低的起始还原温度和较高的Cu+物种含量有关.原位红外研究表明,NH3先吸附在催化剂表面的Lewis酸位(Cun+位)和Brnsted酸位上,进而参与SCR反应,且吸附在Lewis酸位上的NH3物种有更高的低温NH3-SCR活性. In this work, four different Cu-zeolite catalysts named Cu-ZSM-5, Cu-beta, Cu-USY and Cu-SAPO-34 were prepared by an incipient wetness impregnation method. These catalysts are evaluated for the selective catalytic reduction (SCR) of NOx to NHa. Furthermore, all the catalysts are characterized in detail by various techniques (XRD, H2-TPR,CO-DRIFTS,In-situ FTIR), in order to study the physieoehemieal properties of the catalysts and their effects on the NH3-SCR performance. The results indicate that Cu-ZSM-5 and Cu-beta exhibite excellent low temperature activity, reaching about 80~ NO conversion at 150 ~C, and the temperature window was rather wide within the range of 170-400 ℃, probably due to the lower initial reduction temperature and higher Cu+ content for the two catalysts. The results of in-situ FTIR studies show that ammonia can strongly adsorb onto both Lewis and Eronsted sites, thus participating in the SCR reaction, and Lewis acid site-adsorbed ammonia species are much more active than Bronsted sites bound NH3 at low temperature.
出处 《浙江大学学报(理学版)》 CAS CSCD 2014年第4期440-445,共6页 Journal of Zhejiang University(Science Edition)
基金 浙江省重点科技创新团队计划资助项目
关键词 选择性催化还原 分子筛 氮氧化物 selective catalytic reduction Cu zeolite NOx NHs
  • 相关文献

参考文献21

  • 1GROSSALE A, NOVA I, TRONCONI E. Study of a Fe-zeolite-based system as NH3-SCR catalyst for diesel exhaust aftertreatment[J]. Catalysis Today, 2008,186 : 18-27.
  • 2YATES M, MARTIN J A, MARTIN -LUENGO M, et al. NzO formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts[J]. Cataly- sis Today, 2005,107-108 : 120-125.
  • 3KRISHNAN A T, BOEHMAN A L. Selective catalyt- ic reduction of nitric oxide with ammonia at low tem- perature[J]. Applied Catalysis B: Environmental,1998, 18:189-198.
  • 4LONGR Q, YANGR T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide hy am- monia[J]. Journal of the American Chemical Society, 1999,121 : 5595-5596.
  • 5MA L, CHANG H, YANG S, et al. Relations be- tween iron sites and performance of Fe/HBEA cata- lysts prepared by two different methods for NHH3-SCR [J]. Chemical Engineering Journal, 2012,209 : 652-660.
  • 6MA L, LI J H, ARANDIYAN H, et al. Influence of calcination temperature on Fe/HBEA catalyst for the selective catalytic reduction of NOT with NH3[J]. Ca- talysis Today, 2012,184 : 145-152.
  • 7SJOVALL H, OLSSON L, FRIDELL E, et al. Selec- tive catalytic reduction of NOx with NH3 over Cu- ZSM-5-The effect of changing the gas composition[J]. Applied Catalysis B: Environmental, 2006,64 : 180-188.
  • 8OLSSON L, SJOVALL H, BLINT R J. A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5 [J]. Applied Catalysis B: Environmental, 2008,81: 203-217.
  • 9SJOVALL H, BLINT R J, OLSSON L. Detailed ki- netic modeling of NH3 SCR over Cu-ZSM-5 [J]. Ap- plied Catalysis B: Environmental, 2009,92 :138-153.
  • 10WILKEN N, KAMASAMUDRAM K, CURRIER N W, et al. Heat of adsorption for NH3, NO2 and NO on Cu-Beta zeolite using microcalorimeter for NH3 SCR applications[J]. Catalysis Today, 2010,151 : 237- 243.

同被引文献50

  • 1栾兆华,张盈珍,盛世善,陈恒荣,郑禄彬.不同方法脱铝八面沸石性质研究——Ⅰ.骨架结构与 Si、Al 分布[J].石油学报(石油加工),1993,9(4):35-42. 被引量:3
  • 2Kaijiao Duan, Zhiming Liu. Novel Pd-Au/TiO2 catalyst for the selective eatalytie reduction of NO~ by Hz [ J]. Catalysis Communications,2014 (57) :19-22.
  • 3Byungchul Choi, Kyung - Seok Lee. LNT/CDPF catalysts for simultaneous removal of NOX and PM from diesel vehicle exhaust [ J ]. Chemical Engineering Journal,2014(240) :476-486.
  • 4Dal Young Yoon, Eunho Lim, Young Jin Kim. NO oxidation activity of Ag-dnped perovskite catalysts [ J ]. Journal of Catalysis, 2014 ( 319 ) : 182-193.
  • 5CLIMENT M J, CORMA A, IBORRA S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green Chemistry, 2014, 16(2):516-547.
  • 6JOSHI H, MOSER B R, TOLER J, et al. Ethyl levulinate:a potential bio-based diluent for biodiesel which improves cold flow properties[J]. Biomass and Bioenergy, 2011, 35(7):3262-3266.
  • 7WINDOM B C, LOVESTEAD T M, MASCAL M, et al. Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel[J]. Energy & Fuels, 2011, 25(4):1878-1890.
  • 8LE VAN MAO R, ZHAO Q, DIMA G, et al. New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction[J]. Catalysis Letters, 2011, 141(2):271-276.
  • 9GARVES K. Acid catalyzed degradation of cellulose in alcohols[J]. Journal of Wood Chemistry and Technology, 1988, 8(1):121-134.
  • 10OLSON E S. SUBTASK 4.1-conversion of lignocellulosic material to chemicals and fuels[R]. 2001.

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部