期刊文献+

一种改进的格上CCA安全的密码方案

An Advanced CCA Secure Cryptographic Scheme Based on Lattice
下载PDF
导出
摘要 改进了Peikert C的一篇经典文章中基于格的CCA安全的公钥密码方案.在保持经典方案加解密速度快、密文扩展率低,能够进行公开的密文完整性验证,能够实现块加密的优良性质不变的基础上,把方案中陷门函数生成的两组实例巧妙地变换成只生成一组实例,并且对新方案的正确性和新方案在标准模型下的CCA安全进行了严格地证明,最后比较了两种方案的密钥长度.新方案的公钥长度和私钥长度较Peikert C的方案有显著地缩减.因此,新方案克服了经典方案中密钥长度太大的严重缺陷,在方案的效率上有了大幅度提高. This paper improves the classical CCA secure public key cryptographic scheme based on lattice by Peikert C. This new scheme can maintain its graceful properties of public ciphertext integrity verification,block encryption and a high encryption /decryption speed and a low encryption blowup factor. What's more,this new scheme decreases the public key length and secret key length of the scheme in large scale by altering its double groups instance to single on the premise of its validity and security,which are the most important limitations of the scheme. Therefore we get a huge improvement in its efficiency.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第7期1505-1508,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272492 61103231 61103230)资助
关键词 公钥密码体制 可证明安全 CCA安全 public key cryptosystem provably security lattice CCA
  • 相关文献

参考文献9

  • 1Diffie W, Hellman M E. New directions in cryptography [J]. IEEE Transactions on Information Theory, 1976,22(6) :644-654.
  • 2Yang Xiao-yuan. Modem cryptography [ M]. Xi'an :Xidian Univer- sity press ,2009.
  • 3Wang ji-lin, Wu qian-hong. Modem cryptography : theory and prac- tice [M]. Beijing:Electronic Industry Press,2004.
  • 4Yang Xiao-yuan, Wei Li-xian. Computer cryptography [M]. Xi' an : Xi'an Jiaotong University Press,2007.
  • 5Oded Regev. The learning with errors problem [ R]. Invited survey in CCC 2010 ,http:// www. cs. tau. ac. il/-odedr/papers/lwesur- vey. pdf, 2010.
  • 6Ajtai M. Generating hard instances of lattice problems [ C]. In Pro- ceedings of the 28th Annual ACM Symposium on Theory of Com- puting, 1996:99-108.
  • 7Wu Li-qiang. Research on cryptosystems based on lattices [ D]. Xi' an:Engineering College of the Armed Police Force, 2012.
  • 8Regev O. On lattices, learning with errors, random linear codes and cryptography [ J ]. Journal of the ACM ,2009,56 (6) : 1-40.
  • 9Peikert C. Public-key cryptosystems from the worst-case shortest vector problem [ C ]. In STOC 2009, Bethesda, Maryland, 2009 : 333 -342.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部