摘要
由于广域测量系统(wide area measurement system,WAMS)海量实时数据的大规模、高负荷并发访问,其采用的同步机制在很大程度上约束了系统的效率。针对于目前普遍使用的整体锁定机制带来的由于访问串行化导致的效率低下问题,提出了粒度可控并发访问同步算法(controllablegranularity concurrency synchronization,CGCS),该方法使用控制标志位建立基于子集超集依赖的锁定条件和先进先出等待队列,并可控锁定级别,实现对实时数据访问的互斥粒度粗细的任意控制,同时作用于整体文件、表、元组,进而任务可以最大化地并发执行。通过实验,给出了系统的并发处理能力和IO响应能力的测试过程和结果,证明了CGCS算法在并发高、访问散的情况下能充分发挥CPU的并行处理能力,使WAMS系统的效率得到大幅提升。
Due to large-scale and high-load concurrent access to massive real-time data of wide area measurement system(WAMS), the synchronization mechanism of WAMS constrains the system efficiency to great extent. For the problem of low efficiency caused by serialized access in common method of whole-locking mechanism, a controllable granularity concurrency synchronization(CGCS) algorithm was proposed in this paper. It is an approach of synchronization for in-memory data concurrent access using control flag to establish locking condition based on subset-superset dependence and first-in-first-out waiting queue which has controllable locking level. It can control mutex granularity of in-memory data access at any level, and enable it act on whole file, table, tuple level, and then the task can be executed concurrently to the most degree. By experiments, the process and results of test about system capability of concurrent access and IO response was given. The results show that CGCS algorithm gives full play to CPU ability to parallel process and largely improves the efficiency of WAMS in the high concurrency and dissipated access situation.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2014年第19期3226-3233,共8页
Proceedings of the CSEE
基金
高等学校博士学科点专项科研基金课题(20120036120003)
中央高校基本科研业务费专项资金项目(12ZP09)~~
关键词
广域测量系统
内存数据库
同步
并发访问
可控粒度
wide area measurement system(WAMS)
in-memory database
synchronization
concurrent access
controllable granularity