期刊文献+

微博中文本特征质量对检索效果的影响

The Effect of the Quality of Textual Features on Retrieval in Micro-blog
原文传递
导出
摘要 【目的】通过对国内4大微博平台中特征词质量的测度,探讨其质量指标对检索效果的影响。【方法】将权重计算指标TF-IDF从特征词角度提升为特征的研究,并通过描述能力和辨别能力两个质量测度指标对国内4个主流微博平台中各特征的质量进行评估。【结果】微博中文本特征的描述能力和辨别能力对检索效果产生正向影响;各平台不同特征的质量对分类有着不同程度的影响,两种测度指标综合考虑时得到的分类效果最好。【局限】微博中的对话回复、粉丝数、关注数等特征并没有被考虑在内;对于语义研究中的特征词一词多义或者同义词的讨论并未涉猎。【结论】本研究可更好地揭示微博中各种特征影响检索效果好坏的重要程度,有助于研究者对各平台特征作用的深入理解,从而从根本上提高社会化媒体平台的检索质量。 [Objective] To discuss the effect of features quality on the search results through the four major domestic microblogging. [Methods] The weight calculation indicators TF-IDF is enhanced from the perspective of the whole feature, and the quality of each feature in the microblogging is further assessed by the two measure indicators including descriptive power and discriminative power. [Results] The descriptive power and discriminative power in microblogging appeare positive effects on the search results; Different quality of features in each platform has different impact to the classified results; And integrating the two indexes has the best effective in the classification. [Limitations] Some other features in the microblogging, namely dialogue replies, and number of fans, have not been taken into account. And the word semantic ambiguity characteristic like synonyms is not discussed yet. [Conclusions] This study helps features in the microblogging to be in-depth understood through the discussion that the effect of features quality on the search results. So as to improve the retrieval quality in the social media platforms.
出处 《现代图书情报技术》 CSSCI 北大核心 2014年第6期79-86,共8页 New Technology of Library and Information Service
基金 国家自然科学基金项目“社会化媒体集成检索与语义分析方法研究”(项目编号:71273194) 武汉大学2013年研究生自主科研项目“社会化媒体检索策略研究”(项目编号:2013104010206)的研究成果之一
关键词 微博 文本特征 描述能力 辨别能力 检索 Micro-blog Text features Descriptive power Discriminative power Retrieval
  • 相关文献

参考文献23

  • 1中国互联网信息中心.第31次中国互联网络发展状况统计报告[R/OL].(2013-01-15)[2013-07-19]http://www.cnniC.cn/hlwfzYj/hlwxzbg/hlwtjbg/201301/P020130717601393868761.pdf.
  • 2Li Z C, Liu J, Jiang Y, et al.Low Rank Metric Learning for Social Image Retrieval[C]. In: Proceedings of the 20th ACM International Conference on Multimedia. New York: ACM, 2012: 853-856.
  • 3Zhou D, Lawless S, Wade V. Improving Search via Personalized Query Expansion Using Social Media[J]. Information Retrieval, 2012, 15(3-4): 218-242.
  • 4Sizov S.GeoFolk: Latent Spatial Semantics in Web 2.0 Social Media[C]. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining(WSDM'10). New York: ACM, 2010:281-290.
  • 5Hsu M H, Chen H H.Efficient and Effective Prediction of Social Tags to Enhance Web Search[J]. Journal of the American Society for Information Science and Technology, 2011,62(8):1473-1487.
  • 6胡军,王兵,刘禹,李德毅.Personalized Tag Recommendation Using Social Influence[J].Journal of Computer Science & Technology,2012,27(3):527-540. 被引量:6
  • 7Kuo Y H, Cheng W H, Lin H T, et al. Unsupervised Semantic Feature Discovery for Image Object Retrieval and Tag Refinement[J]. IEEE Transactions on Multimedia, 2012, 14(4): 1079-1090.
  • 8宋立荣,李思经.从数据质量到信息质量的发展[J].情报科学,2010,28(2):182-186. 被引量:18
  • 9Strong D M, Lee Y W, Wang R Y. Data Quality in Context[J]. Communications of the ACM, 1997, 40(5): 103-110.
  • 10查先进,陈明红.信息资源质量评估研究[J].中国图书馆学报,2010,36(2):46-55. 被引量:76

二级参考文献81

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部