期刊文献+

正渗透过程中水与溶质的传递现象 被引量:9

Water and solute transport phenomena in forward osmosis process
下载PDF
导出
摘要 正渗透是一种利用渗透原理的新兴膜技术,近年来在国内外受到了广泛的关注。解析该过程中溶剂水的传递和驱动溶质的反向传递对其发展和应用至为关键。首先开展了两种膜的取向下,正渗透过程中的水通量和溶质反向摩尔通量的实验研究。当驱动溶液在膜分离层侧时,水通量更高,而溶质反向摩尔通量更低,表明水的传递对溶质的反向传递有限制作用。而后分别考察了不同的单一溶质和二元混合溶质作为驱动溶质时,水和溶质的传递现象。当单一中性溶质或电解质作为驱动溶质时,水通量和溶质反向摩尔通量均随驱动溶液浓度的升高而增大;在相同操作条件下,驱动溶质的扩散系数越小,溶质反向摩尔通量越小;中性溶质与电解质混合溶液为驱动溶液时,溶质分子之间存在耦合传递效应。 As a novel technology using the principle of osmosis, forward osmosis has drawn worldwide attentions in recent years. Understanding the simultaneous water transport and solute reverse transport in the forward osmosis processes is essential to the development and application of this emerging technology. In this study, the effects of two membrane orientations on solute reverse molar flux and water flux were investigated. The water flux in the mode of active layer facing draw solution was higher than that in the mode of active layer facing feed solution, whereas solute reverse molar flux presented a contrary result, which indicated that transport of water would restrict the reverse transport of solute. The effects of different types of solute, including one single solute and two-component mixed solutes, on solute flux and water flux were also investigated. Water flux and solute reverse molar flux increased with increasing draw solution concentration when using single neutral solute or electrolyte as solute. Under the same operation condition, the smaller the diffusion coefficient was, the lower the solute reverse molar flux was. Furthermore, the coupled transport of the solutes was observed in the mixed draw solution.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第7期2813-2820,共8页 CIESC Journal
基金 国家高技术研究发展计划项目(2009AA062901 2012AA03A604) 国家重点基础研究发展计划项目(2009CB623401) 北京市自然科学基金项目(2100001)~~
关键词 正渗透 水通量 溶质反向摩尔通量 传递现象 forward osmosis water flux solute reverse molar flux transport phenomena
  • 相关文献

参考文献17

  • 1Cath T Y, Childress A E, Elimelech M. Forward osmosis: principles, applications, and recent developments[J], d. Membr. Sci., 2006, 281(1/2): 70-87.
  • 2McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. J. Membr Sci., 2006, 284(1/2): 237-247.
  • 3苏萌,王大新,王晓琳,安藤雅明,新谷卓司.双组分无机电解质溶液的纳滤膜分离性能[J].化工学报,2005,56(12):2357-2360. 被引量:9
  • 4姬朝青,陈浩.反渗透、纳滤过程的物理化学研究(Ⅰ)多孔膜的溶质脱除率方程和膜渗透通量方程[J].化工学报,2006,57(3):601-606. 被引量:16
  • 5Zou S, Gu Y, Xiao D, Tang C Y. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation[J]. J. Membr. Sci., 2011,366(1/2): 356-362.
  • 6Zhao S, Zou L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis[J]. J. Membr. Sci., 2011,379(1/2): 459-467.
  • 7Phillip W A, Yong J S, Elimelech M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environ. Sci. Technol., 2010, 44:5170-5176.
  • 8Yong J S, Phillip W A, Elimelech M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes[J]:1. Membr. Sci., 2012, 392/393:9-17.
  • 9Yong J S, Phillip W A, Elimelecb M. Reverse permeation of weak electrolyte draw solutes in forward osmosis[J], lnd. Eng. Chem. Res.2012, 51:13463-13472.
  • 10Zhao S F, Zou L, Tang C Y Y, Mulcahy D. Recent developments in forward osmosis: opportunities and challenges[J]. J. Membr. Sci., 2012, 396:1-21.

二级参考文献13

  • 1姬朝青.反渗透过程溶质脱除率方程[J].化工学报,1994,45(3):366-370. 被引量:8
  • 2Wang X L,Tsuru T,Togoh M,Nakao S,Kimura S.Evaluation of pore structure and electrical properties of nanofiltration membranes.Journal of Chemical Engineering of Japan,1995,28(2):186-192
  • 3Wang X L,Wang W N,Wang D X.Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions.Desalination,2002,145(1-3):115-122
  • 4Paugam L,Taha S,Dorange G,Quemeneur F.Influence of ionic composition on nitrate retention by nanofiltration.Chemical Engineering Research & Design,2003,81(A9):1199-1205
  • 5Wang X L,Tsuru T,Nakao S,Kimura S.Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model.Journal of Membrane Science,1995,103(1-2):117-133
  • 6Paugam L,Taha S,Cabon J,Dorange G.Elimination of nitrate ions in drinking waters by nanofiltration.Desalination,2003,152(1-3):271-274
  • 7Paugam L,Taha S,Dorange G,Jaouen P,Quéméneur F.Mechanism of nitrate ions transfer in nanofiltration depending on pressure,pH,concentration and medium composition.Journal of Membrane Science,2004,231(1-2):37-46
  • 8Garcia-Aleman J,Dickson J M.Permeation of mixed-salt solutions with commercial and pore-filled nanofiltration membrane:membrane charge inversion phenomena.Journal of Membrane Science,2004,239(2):163-172
  • 9Choi S,Yun Z,Hong S,Ahn K.The effect of co-existing ions and surface characteristics of nanomembranes on the removal of nitrate and fluoride.Desalination,2001,133(1):53-64
  • 10Lonsdale H K,Merten U,Riley R.Transport properties of cellulose acetate osmotic membrane.J.Appl.Polymer.Sci.,1965,9:1341.

共引文献20

同被引文献91

  • 1王瑾,李登新.基于乙酸根离子的有机化肥作为正渗透膜反应器的汲取液缓解反应器中的盐积累[J].环境工程学报,2019,13(12):2853-2862. 被引量:1
  • 2蒋建东,张瑞福,何健,张晓舟,崔中利,李顺鹏.细菌对环境污染物的趋化性及其在生物修复中的作用[J].生态学报,2005,25(7):1764-1771. 被引量:18
  • 3舒睿俊,陈军,陈哲敏.基于温控Bragg光栅滤波器的光纤Bragg光栅动态应变传感系统[J].传感技术学报,2007,20(3):554-558. 被引量:1
  • 4Bharadwaj R,Singh D,Mahapatra A. Seawater desalination technologies[J].International Journal of Nuclear Desalination,2008,3(2):151-159.
  • 5Paul D. Microelectronics water treatment system overview[J].Ultrapure Water,2009,26(5):38-40.
  • 6Melo M,Schluter H,Ferreira J,et al. Advanced performance evaluation of a reverse osmosis treatment for oilfield produced water aiming reuse[J].Desalination,2010,250(3):1016-1018.
  • 7McCutcheon J R,McGinnis R L,Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process[J].Desalination,2005,174(1):1-11.
  • 8McCutcheon J R,McGinnis R L,Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance[J].Journal of Membrane Science,2006,278(1):114-123.
  • 9Kravath R E,Davis J A. Desalination of sea water by direct osmosis[J].Desalination,1975,16(2):151-155.
  • 10Tan C H,Ng H Y. A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination:Draw solution selection and system configuration[J].Desalination and Water Treatment,2010,13(1-3):356-361.

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部