期刊文献+

基于Hamiltonian马氏链蒙特卡罗方法的突变运动跟踪 被引量:5

Hamiltonian Markov Chain Monte Carlo Method for Abrupt Motion Tracking
下载PDF
导出
摘要 在计算机视觉领域,由镜头切换、目标动力学突变、低帧率视频等引起的突变运动存在极大的不确定性,使得突变运动跟踪成为该领域的挑战性课题.以贝叶斯滤波框架为基础,提出一种基于有序超松弛Hamiltonian马氏链蒙特卡罗方法的突变运动跟踪算法.该算法将Hamiltonian动力学融入MCMC(Markov chain Monte Carlo)算法,目标状态被扩张为原始目标状态变量与一个动量项的组合.在提议阶段,为抑制由Gibbs采样带来的随机游动行为,提出采用有序超松弛迭代方法来抽取目标动量项.同时,提出自适应步长的Hamiltonian动力学实现方法,在跟踪过程中自适应地调整步长,以减少模拟误差.提出的跟踪算法可以避免传统的基于随机游动的MCMC跟踪算法所存在的局部最优问题,提高了跟踪的准确性而不需要额外的计算时间.实验结果表明,该算法在处理多种类型的突变运动时表现出出色的处理能力. Tracking of abrupt motion is a challenging task in computer vision due to the large motion uncertainty induced by camera switching, sudden dynamic change, and rapid motion. This paper proposes an ordered over-relaxation Hamiltonian Markov chain Monte Carlo (MCMC) based tracking scheme for abrupt motion tracking within Bayesian filtering framework. In this tracking scheme, the object states are augmented by introducing a momentum item and the Hamiltonian dynamics (HD) is integrated into the traditional MCMC based tracking method. At the proposal step, the ordered over-relaxation method is adopted to draw the momentum item in order to suppress the random walk behavior induced by Gibbs sampling. In addition, the paper provides an adaptive step-size scheme to simulate the Hamiltonian dynamics in order to reduce the simulation error. The proposed tracking algorithm can avoid being trapped in local maxima with no additional computational burden, which is suffered by conventional MCMC based tracking algorithms. Experimental results reveal that the presented approach is efficient and effective in dealing with various types of abrupt motions compared with several alternatives.
出处 《软件学报》 EI CSCD 北大核心 2014年第7期1593-1605,共13页 Journal of Software
基金 国家自然科学基金(61300082 61272369 61073133 61175053 61001158) 中央高校基本科研业务费专项资金(3132013335) 大连市科技计划项目(2013A16GX115 2011A17GX073)
关键词 视觉跟踪 突变运动 马氏链蒙特卡罗 HAMILTONIAN 马氏链蒙特卡罗方法 有序超松弛 visual tracking abrupt motion MCMC Hamiltonian MCMC ordered over-relaxation
  • 相关文献

参考文献2

二级参考文献26

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197- 208.
  • 3Li P, Zhang T, Pece A E. Visual contour tracking based on particle filters. Image and Vision Computing, 2003, 21(1): 111-123.
  • 4Nummiaro K, Koller Meier E B, Van Gool L. An adaptive color based particle filter. Image and Vision Computing, 2003, 21(1): 100 -110.
  • 5Perez P, Hue C, Vermaak J, Gangnet M. Color-based probabilistic tracking//Proceedings of the European Conference on Computer Vision. Copenhagen, Denmark, 2002:661-675.
  • 6Jacquot A, Sturm P, Ruch O. Adaptive tracking of non-rigid objects based on color histograms and automatic parameter selection//Proceedings of the IEEE Workshop on Motion and Video Computing, Breckenridge, USA, 2005: 103-109.
  • 7Town C. Multi-sensory and multi modal fusion for sentient computing. International Journal of Computer Vision, 2007, 71(2):235- 253.
  • 8Viola P, Jones M. Rapid object detection using a boosted cascade of simple features//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii, USA, 2001:511 -518.
  • 9Yang C, Duraiswami R, Davis L S. Fast multiple object tracking via a hierarchical particle filter//Proceedings of the IEEE Conference on Computer Vision. Beijing, China, 2005, 212- 219.
  • 10Wang J, Chen X, Gao W. Online selecting discriminative tracking features using particle filter//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA, 2005:1037 -1042.

共引文献70

同被引文献37

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部