摘要
铁路战略装车点作为铁路的重要装车基地,是铁路发展大宗货物物流的重要网络节点。从战略装车点的物流设施能力、物流设备能力、交通衔接能力和物流管理能力四个方面构建了战略装车点物流竞争力评价指标,战略装车点物流竞争力的BP神经网络评价模型。结合北京市铁路局所属的53个战略装车点的相关数据,通过Matlab仿真程序进行网络训练和结构调整,并利用训练好的铁路战略装车点网络进行样本评价。结果表明,该评价模型收敛速度快,精度高,合理可行。
As an important base loading of railway, the strategy of railway loading point is an important network of railway development bulk cargo logistics nodes. The author constructs the strategic loading point logistics competitiveness evaluation index and the strategic loading point BP neural network evaluation model of logistics competitiveness from four aspects of strategic loading point of logistics facilities, logistics equipment, the integration and logistics management to. Combining with the Beijing railway bureau's 53 strategic loading point of relevant data, through the Matlab simulation network training and structural adjustment, and use the trained railway strategic loading point network sample evaluation. Results show that the evaluation model has fast convergence speed, high precision, and is reasonable and practical.
出处
《河北经贸大学学报》
CSSCI
北大核心
2014年第4期91-95,111,共6页
Journal of Hebei University of Economics and Business
关键词
BP神经网络
铁路运输
大宗货物
战略装车点
物流竞争力
仓储能力
BP neural network
railway transportation
lot cargo
strategic loading point
logistics competitiveness
storage capability