期刊文献+

基于抽样的概念层次挖掘算法 被引量:1

AN ALGORITHM FOR CONCEPT HIERARCHY MINING BASED ON SAMPLING
下载PDF
导出
摘要 本文通过对数据挖掘的几种传统属性归纳算法的分析,发现它们存在以下不足:(1)不能处理不平衡的概念层次;(2)没有考虑实际数据分布对最后的泛化规则的影响。因此,本文提出了基于抽样的概念层次挖掘算法,它先采用抽样方法,对概念层次进行初步调整,然后扫描整个数据文件,利用扫描信息再次调整概念层次,最后通过统计调整后的概念层次的叶子信息就可以得到泛化规则。本算法不仅克服了传统算法的不足,而且具有最优的时间复杂度O(h)和空间复杂度O(c)。 This paper first presents some traditional Attribute - Oriented Induction (AOI) algorithms in data mining field and points out the shortcomings of them as follows: (1) they couldn' t deal with the unbalanced concept hierarchy; (2) the final generalized result doesn't refer to the distribution of real data set.Hence,we put forward an algorithm for concept hierarchy mining based on sampling,which samples the dataset first, and arranges the initial concept hierarchy, then scans the whole dataset,later organize the concept hierarchy according to the statistics information, finally get the generalized rule by calculating the information of leaves. It not only solves the above problems, but also has the optimal time and space complexity.
出处 《计算机应用与软件》 CSCD 北大核心 2001年第3期57-63,共7页 Computer Applications and Software
关键词 数据挖掘 属性归纳算法 概念层次 数据库 Data mining Attribute - oriented induction Concept hierarchy
  • 相关文献

参考文献8

  • 1[1]J. Han, Y. Cai and N. Cercone, “Data - Driven Discovery of Qtantitative Rules in Relztional Derabases”, IEEE Trans. Knowledge and Data Eng. ,pp.29 ~ 40,Feb. 1993.
  • 2[2]Y. Cai,N. Cercone and J. Han,“Attribute- oriented Induction in Relational Databases,"In G.Piatetsky- Spapiro and W. J. Frawley,editors, Knowledge Discovery in Databases,pp.213~ 228, AAM/MIT Press, 1991.
  • 3[3]C.L. Carter and H.J. Hanilton, “Efficient Attribute - oriented Algorithms for Knowledge Discovery from Large Datahases, IEEE Trans.on Knowledge and Data Engineering,Vol. 10,No.2,March/April 1998,pp. 193~208.
  • 4[4]J. Han, Y. Cai and N. Cercone,“ Knowledge Discovery in Databases: An Attribute- oriented Approach”, In Proc. 18th Int. Conf. Very Large Databases,pp.547~559, Vancouver,Canada, August 1992.
  • 5[5]Jiawei Han, Yongjian Fu,“Exploration of the Power of Attribute- Oriented Induction in Data Mining”,http://www.cs.uregina.ca.
  • 6[6]Jiawei Han, Yongjian Fu,“Dynamic Generation and Refinement of Concept Hierarchies for Knowledge Discovery in Databases”,http: ∥www.cs. Urehina. Ca.
  • 7[7]Agrawal, R., Imielinski, T. And Swami, A., 1993, Mining Association Rules between Sets of Items in Large, In Proc. 1993ACM- SIGMOD Int. Conf. Management ofData, pp. 207 ~ 216, Washington, D. C. :ACM Press.
  • 8[8]Piatesky- Shapiro, G. And Frawley,W. J., 1991, Knowledge Discovery in Databases, AAAI/MIT Press.

同被引文献7

  • 1Han J, Cai Y, Cercone N. Knowledge discovery in databases: an attribute-oriented approach[C]//Proceedings of the 18th VLDB Conference. Vancouver, British Columbia, Canada, 1992 : 547-559.
  • 2Cai Yandong, Cercone N, Han Jiawei. Attribute-oriented induction in relation databases[M]//Shapiro G P, Frawley W J. Knowledge Discovery in Databases. Menlo Park, California: AAAI Press/The MIT Press, 1991:13-228.
  • 3Han Jiawei, Cai Yangdong, Cercone N. Data-driven discovery of quantitative rules in relation databases [J]. IEEE Transactions on Knowledge and Data Engineering, 1993, 5 (1) :29-40.
  • 4Carter C L, Hamilton H J. Performance evaluation of attribute-oriented algorithms for knowledge discovery from databases[C]//Proeeedings of ICTAI, 7th IEEE International Conference Tools with Arrificial Intelligence Wash- ington D C: IEEE Computer Society, 1995:486-489.
  • 5Carter C L, Hamilton H J. Efficient attribute-oriented generalization for knowledge discovery from large databases [J].IEEE Transactions on Knowledge and Data Engineering, 1998, 10(2):193-208.
  • 6周生炳,张钹,成栋.基于规则面向属性的数据库归纳的无回溯算法[J].软件学报,1999,10(7):673-678. 被引量:13
  • 7陈红梅,王丽珍.面向属性的量化归纳[J].计算机研究与发展,2001,38(2):150-156. 被引量:8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部