摘要
用B_(δ,p)(1<P<∞)表示P次可积Fourier变換具有紧支集[-δ,δ]的带有限函数。证明了对于B_(3δ,p)中的函数,可以在L_p(R)尺度下,由序列{f(κπ/δ)},{f'(κπ/δ)}以及{f''(κπ/δ)}的Hermite型插值进行重构.
Denote by Bσ,p(1〈p〈∞) the bandlimited class p-integrable functions whose Fourier transform is supported in the interval [-σ, σ]. It is shown that a function in B3σ,p(1 p 〈 ∞) can be reconstructed ill Lp(R) by its sampling sequences {f(κπ/δ)},{f'(κπ/δ)}and {f"(κπ/δ)} using the Hermite cardinal interpolation.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第11期300-307,共8页
Mathematics in Practice and Theory
基金
2013北方工业大学教育教学研究项目资助
关键词
插值定理
样本序列
收敛
Interpolation theorem
sampling sequences
convergence