期刊文献+

带分布时滞的具有尺度结构的种群模型的异步指数增长

Asynchronous Exponential Growth for a Size-structured Two-phase Population Model with Delayed Birth Process
原文传递
导出
摘要 研究一个带分布时滞的具有尺度结构的种群模型.模型将个体分为"活跃"期和"休眠"期两个阶段研究.利用算子半群的理论证明了此模型的适定性并证明此模型的解具有异步指数增长的状态. In this paper we study a size-structured two-phase population model with delayed birth process. We establish the well-posedness for this model and show that the solution of this model has asynchronous exponential growth by means of semigroups.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第12期170-178,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(11171295 11226182 11301474)) 广东省高等学校优秀青年教师培养计划(Yq2013163) 肇庆市科技创新计划项目 肇庆学院自然科学基金资助
关键词 尺度结构 分布时滞 适定性 异步指数增长 算子半群 Size-structured populations distributed delay well-posedness asynchronousexponential growth semigroups.
  • 相关文献

参考文献11

  • 1Farkas J Z, and Hinow P. On a size-structured two-phase population model with infinite states-at- birth[J]. Positivity, 2010, 14(3): 501-514.
  • 2Farkas J Z, Green D W, and Hinow P. Semigroup analysis of structured parasite populations[J]. Mathematical Modelling of Natural Phenomena, 2010(5): 94-114.
  • 3Auslander D M, Oster G F, and Huffaker C B. Dynamics of interacting populations[J]. J. Franklin Inst, 1974(297): 345-376.
  • 4Piazzera S, and Tonetto L. Asynchronous exponential growth for an age dependent population equation with delayed birth process[J]. J Evol Equ, 2005(5): 61-77.
  • 5Batkai A, and Piazzera S. Semigroups and linear partial differential equations with delay[J]. J Math Anal Appl, 2001(264): 1-20.
  • 6王定江.非线性年龄依赖细胞分裂模型[J].数学的实践与认识,2007,37(8):7-12. 被引量:2
  • 7Dyson J, Villella-Bressan R, Webb G F. Asynchronous exponential growth in an age population of proliferating and quienscent cells[J]. Math Biosci, 2002, 177-178: 73-83.
  • 8Thieme H R. Balanced exponential growth of operator semigroups[J]. J Math Anal Appl 30-49. structured 1998(223).
  • 9Engel K J, and Nagel R. One-parameter Semigroups for Linear Evolution Equations[M]. Springer New York, 2000.
  • 10Ph. Clement H, Heijmans S, Angenent C, van Duijin and B. de Pagter. One-Parameter Semigroups[M]. North-holland, Amsterdam, 1987.

二级参考文献8

  • 1[1]Dyson J,Villella-Bressan R,Webb G F.A nonliear age and maturity structureed model of population dynamics.Ⅰ.Basic Theory[J].J Math Anal Appl,2000,242:93-104.
  • 2[2]Dyson J,Villella-Bressan R,Webb G F.A nonliear age and maturity structureed model of population dynamics.Ⅱ.Chaos[J].J Math Anal Appl,2000,242:255-270.
  • 3[3]Webb G F.Theory of Nonliear Age-Dependent Population Dynamics[M].Marcel Dekker,New York,1985.
  • 4[4]Hisashi Inaba.Nonliear dynamics of open marine population with space-limited recruitment:The case of mortality control[J].J Math Anal Appl,2002,275:537-556.
  • 5[5]Nobuyuki Kato,Kazushige Sato.Continuous dependence results for a general model of size-dependent population dynamics[J].J Math Anal Appl,2002,272:200-222.
  • 6[6]Mostafa ADIMY.Laurent PUJO-MENJOUET.Asymptotic behavior of a singular transport equation modelling cell division[J].Cont and Disc Dynam Syst Ser B,2003,3(1):439-456.
  • 7[7]Mackey M C,Rudnicki R.Global stability in a delayed partial differential equation describing cellular replication[J].J Math Biol,1994,33:89-109.
  • 8[8]Mackey M C,Rudnicki R.A new criterion for the global stability of simultaneous cell replication and maturation processes[J].J Math Biol,1999,38:195-219.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部