期刊文献+

基于改进粒子群优化LSSVM的水泥熟料fCaO软测量 被引量:5

Soft measurement of cement clinker fCaO by improved particle swarm optimization based LSSVM
下载PDF
导出
摘要 针对水泥熟料fCaO含量难以在线实时测量,提出了一种基于最小二乘支持向量机的软测量建模方法。针对最小二乘支持向量机模型的2个难点进行了改进:首先利用样本间的马氏距离来衡量样本的相似程度,删除样本中部分相似样本,提高最小二乘支持向量机模型的稀疏性,从而减小了模型的运算量。然后利用改进的粒子群优化算法对最小二乘支持向量机模型的2个重要参数进行迭代寻优,克服了常规交叉验证法或网格搜索法等参数选择方法的盲目性。最后将基于粒子群最小二乘支持向量机软测量模型用于熟料fCaO含量的实例仿真。结果表明,该方法具有收敛性好、预测精度高、泛化能力强等优点。 It is difficult to accurately measure the content of cement clinker fCaO in online and real-time way.In this study,a soft sensor modeling method based on least squares support vector machine (LSSVM) is provided.The following improvements are made to connect two difficulties of LSSVM model.Firstly,the Mahalanobis distance between samples is used to measure the similarity of samples,which is followed by deleting some similar samples and improving the sparsity of LSSVM to improve the computation model.Secondly,the improved particle swarm optimization (PSO)algorithm is used to iteratively optimize two important parameters of LSSVM model,which can overcome the blindness of parameter selection method of conventional cross validation method or the grid search method.Finally,the clinker fCaO content is simulated by means of the PSO LSSVM soft measurement model.It indicates that the method has good convergence,high precision and strong generalization ability.
出处 《现代化工》 CAS CSCD 北大核心 2014年第6期152-155,共4页 Modern Chemical Industry
关键词 软测量 最小二乘支持向量机 稀疏性 粒子群优化 soft-sensing least square support vector machine (LSSVM) sparsity particle swarm optimiziation (PSO)
  • 相关文献

参考文献10

二级参考文献80

共引文献114

同被引文献44

  • 1刘文光,王孝红,于宏亮,吴敬建.基于LS-SVM的水泥熟料煅烧过程f-CaO软测量研究[J].控制工程,2008,15(S2):85-88. 被引量:13
  • 2王卓,苑明哲,王宏,王天然.水泥熟料质量指标的软测量建模研究[J].化工自动化及仪表,2006,33(6):53-54. 被引量:10
  • 3胡建秀,曾建潮.二阶振荡微粒群算法[J].系统仿真学报,2007,19(5):997-999. 被引量:21
  • 4ADNAN N, PARNTHEP J, PITISAN K, et al. Effect and limitation of free lime content in cement-fly ash mixtures [ J ]. Construction and Building Materials, 2016, 102(1) : 515-530.
  • 5KRITTIYA K, PITISAN K, TAWEECHAI S, et al. Effect of free lime content on properties of cement-fly ash mixtures [ J ]. Construction and Building Materials, 2013, 38(2) : 829-836.
  • 6LI W, WANG D, ZHOU X, et al. An improved multi- source based soft sensor for measuring cement free lime content [ J ]. Information Sciences, 2015, 323 (12) : 94-105.
  • 7LI W, WANG D, CHAI T. Multisource data ensemble modeling for clinker free lime content estimate in rotary kiln sintering processes [ J ]. IEEE Transactions on Systems Man & Cybernetics Systems, 2015, 45 ( 2 ) : 303 -314.
  • 8HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine : Theory and applications [ J ]. Neurocomputing, 2006, 70(1-3): 489-501.
  • 9PAK K W, YANG Z X, CHI M V, et al. Real-time fault diagnosis for gas turbine generator systems using extreme learning machine [ J ]. Neurocomputing, 2014, 128 ( 5 ) : 249 -257.
  • 10ELLIACKIN M N F, TERESA B. Investigating the use of ahernative topologies on performance of the PSO- ELM[J]. Neuroeomputing, 2014, 127(3): 4-12.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部