期刊文献+

均匀水介质中计算电子束平均能量的拟合公式

A Fitted Formula for Calculating Electron Beams Mean Energy in the Homogeneous Water Phantom
原文传递
导出
摘要 在放射治疗中,混合笔束模型(HPBM)是一种计算电子束剂量分布的有效方法。而入射电子束的平均能量分布是影响HPBM精度的因素之一,特别是在电子束射程末端的地方。本文以蒙特卡洛(MC)程序对6—20MeV范围内电子束在水介质中平均能量分布模拟结果为基础,提出了一种新的拟合公式,并将拟合公式和已有的经验公式分别计算的平均能量代人到HPBM中,以美国高能电子束治疗计划联合工作组(ECWG)实测电子束剂量分布的数据为参考,评估了该能量范围内拟合公式的精度。结果显示,由拟合公式计算平均能量得到的剂量分布精度有大约1%的提高。 Abstract: The hybrid pencil beam model (HPBM) is an effective algorithm for calculating electron dose distribution in radiotherapy. The mean energy distribution of incident electron beam in phantom is one of the factors that affect the calculation accuracy of HPBM, especially in field edge areas near the end of the electron range. A new fitted formula based on Monte Carlo (MC) simulation data for electron beams with energy range of 6-20MeV in the homogeneous water phantom is proposed in this paper. The precision of the fitted formula within the scope of the en- ergy was evaluated by comparing the electron dose distribution of ECWG measured data with that obtained from HPBM which took the mean electron energy that calculated by the fitted formula and the existed empirical formula, respectively. The results showed that the accuracy of dose distribution that obtained by the mean electron energy cal- culated with the fitted formula increased about 1%.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第3期516-519,542,共5页 Journal of Biomedical Engineering
基金 国家支撑计划资助项目(2011BAI12B05和2012BAI15B0)
关键词 电子笔束 混合笔束模型 平均能量 拟合公式 electron pencil beam hybrid pencil beam model mean energy fitted formula
  • 相关文献

参考文献16

  • 1HOGSTROM K R, MILI.S M D, ALMOND P R. Electron beam dose calculations [J]. Phys Med Biol, 1981, 26 (3): 445-459.
  • 2BUZDAR S A, AFZAI. M, TODD-POKROPEK A. Compar- ison of pencil beam and collapsed cone algorithms, in radio- therapy treatment planning for 6 and 10 MV photon [J]. J Ayub Med Coll Abbottabad, 2010, 22(3):152-154.
  • 3SHIU A S, HOGSTROM K R. Pencil-beam redefinition al-gorithm for electron dose distributions [J]. Med Phys, 1991, 18(1) : 7-18.
  • 4VBOYD R A, HOGSTROM K R, ROSEN Ⅱ. Effect of u- sing an initial polyenergetic spectrum with the pencil-beam re- definition algorithm for electron-dose calculations in water [J]. MedPhys, 1998, 25(11): 2176-2185.
  • 5PERRY D J, HOLT J G. A model for calculating the effects of small inhomogeneities on electron beam dose distributions [J]. MedPhys, 1980, 7(3): 207-215.
  • 6SAMUELSSON A, HYODYNMAA S, JOHANSSON K A. Dose accuracy check of the 3D electron beam algorithm in a treatment planning system [J]. Phys Med Biol, 1998, 43(6) : 1529-1544.
  • 7JETTE D, WALKER S. Electron dose calculation using mul- tiple-scattering theory: energy distribution due to multiple scattering[J]. Med Phys, 1997, 24(3): 383-400.
  • 8LUO Z, JETTE D, WALKER S. Electron dose calculation u- sing multiple-scattering theory: a hybrid electron pencil-beam model[J]. MedPhys, 1998, 25(10): 1954-1963.
  • 9BOYD R A, HOGSTROM K R, STARKSCHALL G. Elec- tron pencil-beam redefinition algorithm dose calculation in the presence of heterogeneities [J]. Med Phys, 2001, 28 (10):2096-2104.
  • 10SANDISON G A, HUDA W, SAVOIE D, et al. Comparison of methods to determine electron pencil beam spread in tissue- equivalent media [J]. Med Phys, 1989, 16(6) : 881-888.

二级参考文献30

  • 1[1]Brahme A 1975 Investigations on the Application of a Microtron Accelerator for Radiation Therapy (Stockholm:Thesis University)
  • 2[2]Hogstrom K R, Mills M D and Almond P R 1981 Phys.Med.Biol.26 445
  • 3[3]Jette D and Walker S 1997 Med. Phys. 24 383
  • 4[4]Lax I 1987 Radiotherapy and Oncology 10 307
  • 5[5]Luo Z M 1985 Phys.Rev. B 32 812
  • 6[6]Luo Z M 1985 Phys.Rev. B 32 824
  • 7[7]Luo Z M and Brahme A 1992 Phys.Rev. B 46 15739
  • 8[8]Luo Z M 1998 Radiation Phys. Chem. 53 305
  • 9[11]Shiu A S and Hogstrom K R 1991 Med.Phys. 18 7
  • 10[12]Luo Z M et al 1998 Med.Phys.25 1954

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部