期刊文献+

基于集合经验分解与改进阈值函数的小波变换心电信号去噪方法研究 被引量:9

Research on ECG De-noising Method Based on Ensemble Empirical Mode Decomposition and Wavelet Transform Using Improved Threshold Function
原文传递
导出
摘要 针对心电图(ECG)信号去噪问题,提出了一种基于集合经验分解(EEMD)和改进阈值函数的小波变换去噪方法。首先利用EEMD对含噪的ECG信号进行分解,选取固有模态函数(IMF),重构ECG信号,实现ECG信号的一次去噪;再利用改进阈值函数的小波变换方法对ECG信号进一步去噪。实验中,利用MIT-BIH心电图数据库对提出的方法进行评估,用参数信噪比(SNR)和均方误差(MSE)比较EEMD、改进阈值函数的小波变换方法以及本文提出的方法的去噪效果。实验结果表明:本文提出的方法去噪后的ECG信号波形平滑,特征点幅值无衰减,在去噪的同时更好地保留了原始ECG信号的特征。 A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EE- MD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for e- valuating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the am- plitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG de- noising and meanwhile keep the characteristics of original ECG signal.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第3期567-571,共5页 Journal of Biomedical Engineering
关键词 心电图 集合经验分解 固有模态函数 改进阈值函数 MIT—BIH electrocardiogram ensemble empirical mode decomposition intrinsic mode function improved threshold function MIT-BIH
  • 相关文献

参考文献9

  • 1TRACEY B H, MILLER E L. Nonlocal means denoising of ECG signals[J]. IEEE Trans Biomed Eng, 2012, 59 (9): 2383-2386.
  • 2WANG A D, LIU L, WEI Q. An adaptive morphologic filter applied to ECG denoising and extraction of R peak at real-time [J]. AASRI Procedia, 2012, 1: 474-479.
  • 3SMITAL L, VITEK M, KOZUMPLIK J, et al. Adaptive wavelet Wiener filtering of ECG signals [J]. IEEE Trans Bi- omed Eng, 2013, 60(2): 437-445.
  • 4SHARMA I. N, DANDAPAT S, MAHANTA A. ECG signal de-noising using higher order statistics in Wavelet sub bans [J]. Biomed Signal Process Control, 2010, 5(3) : 214-222.
  • 5PAI. S, MITRA M. Empirical mode decomposition based ECG enhancement and QRS detection [J]. Comput Biol Med, 2012, 42(19: 83-92.
  • 6KARAGIANNIS A, CONSTANTINOU P. Noise-assisted da- ta processing with empirical mode decomposition in biomedical signals[J]. IEEE Trans Inf Technol Biomed, 2011, 15 (1): 11-18.
  • 7CHANG K M, LIU S H. Gaussian noise filtering from ECG by wiener filter and ensemble empirical mode decomposition [J]. J Signal Process Syst, 2011, 64: 249-264.
  • 8WANG C L, ZHANG C L, ZHANG P T. Denoising algorithm based on wavelet adaptive threshold [J]. Physics Procesia, 2012, 24(Part A) : 678-685.
  • 9金晶晶,王旭,吴雪,杨丹.基于改进阈值函数的体震信号平移不变去噪[J].东北大学学报(自然科学版),2009,30(3):333-336. 被引量:9

二级参考文献10

  • 1潘泉,张磊,孟晋丽,等.小波滤波方法及应用[M].北京:清华大学出版社,2006.
  • 2Trefny Z, Trojan S, Toman V, et al. New trends in ballistocardiography [ J ]. Measure Science Review, 2003, 3 (2):45- 48.
  • 3Castiglioni P, Faini A, Parati G, et al. Wearable seismocardiography [ C ] // Processing of 29th Annual International Conference of the IEEE EMBS. Lyon: IEEE, 2007 : 3954 - 3957.
  • 4Eblen A. A simple ballistocardiographic system for a medical cardiovascular physiology course[J]. Advance in Physiology Education, 2003,27 : 224 - 229.
  • 5Donoho D L. De-noising by soft-thresholding [J ]. IEEE Trans Inform Theory, 1995,41(3) :613 - 627.
  • 6Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [ J ]. Journal of the American Statistical Association, 1995,90:1200-1224.
  • 7Coifman R R, Donoho D L. Translation-invariant de-noising[C] // Lecture Notes in Statistics: Wavelets and Statistics. New York: Springer-Verlag, 1995 : 125 - 150.
  • 8Song G X, Zhao R Z. Three novel models of threshold estimator for wavelet coefficients [ M]. Berlin: Springer- Verlag, 2001:145 150.
  • 9Kim J M, Hong J H, Cha E J. Development of ECG and BCG measuring system on moving wheelchair using CDMA network[ C ]//6th International Special Topic Conference on ITAB. Tokyo: IEEE, 2007:179 -181.
  • 10杨晓峰,张欣,王金浦,卞正中,王波.基于小波变换的多普勒胎儿心率检测研究[J].西安交通大学学报,2007,41(8):917-921. 被引量:8

共引文献8

同被引文献57

引证文献9

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部