期刊文献+

斑状饱和介质的粘弹特性表征与地震波模拟 被引量:6

Viscoelastic representation of patchy saturation media and its seismic wave simulation
下载PDF
导出
摘要 将描述斑状饱和介质的储层参数简化为高、低频极限模量和特征频率3个参数,通过数值模拟实验,说明了利用标准线性体(Standard Linear Solid,简称SLS)模型可以定量表征斑状饱和介质的粘弹特征,包括地震波衰减和速度频散特性,进而为研究斑状饱和介质中地震波场特征与储层参数的定量关系提供了一种简单方便、快速有效的技术手段。基于SLS模型,数值模拟了地震波在斑状饱和介质中的传播,分析了斑状饱和介质中孔隙度及含气饱和度的变化对地震波传播特征的影响。研究结果表明:①根据SLS模型模拟的地震记录可以准确提取斑状饱和介质中的地震波衰减和频散特征。②对一个特定储层,在相同孔隙度条件下,某个特定含气饱和度附近,地震波振幅和相位变化最大;在相同含气饱和度条件下,孔隙度越高,地震波波形变化越大。 Reservoir parameters of patchy saturation media are simplified to high and low frequency limit modulus and characteristic frequency.By numerical simulation test,viscoelasticity of patchy-saturated media,including seis mic wave attenuation and velocity dispersion,can be quantitively represented by Standard Linear Solid (SLS) model with the three parameters.So,SLS model is a simple and convenient method to study the relationship between wavefield characteristics and reservoir parameters in patchy saturation media.Seismic wave propagation in patchy-saturated media is numerically simulated based on the SLS model.Then seismic records are analyzed for the impact of different gas saturation and porosity on seismic wave propagation.Numerical results show that seismic wave attenuation and velocity dispersion in patchy-saturated media can be calculated by seismic records.For a certain reservoir of same porosity,there are most significant influence on seismic wave amplitude and phase around a certain gas saturation,while for a certain reservoir of same gas saturation,the seismic waveform changes violently with the higher porosity.
出处 《石油物探》 EI CSCD 北大核心 2014年第3期272-279,共8页 Geophysical Prospecting For Petroleum
基金 国家科技重大专项(2011ZX05005-005-007HZ) 中国石化地球物理重点实验室开放基金(WTYJY-WX2013-04-08)联合资助
关键词 斑状饱和介质 粘弹介质 标准线性体(SLS) 数值模拟 频散 衰减 patchy-saturated media viscoelastic media standard linear solid numerical simulation dispersion attenuation
  • 相关文献

参考文献34

  • 1Masson Y J,Pride S R.Seismic attenuation due to patchy saturation[J].Journal of Geophysical Research,2011,116:B03206.
  • 2Cadoret T,Mavko G,Zinszner B.Fluid distribution effect on sonic attenuation in partially saturated limestones[J].Geophysics,1998,63 (1):154-160.
  • 3Quintal B,Frehner M,Madonna C,et al.Integrated numerical and laboratory rock physics applied to seismic characterization of reservoir rocks[J].The Leading Edge,2011,30(12):1360-1367.
  • 4White J E.Computed seismic speeds and attenuation in rocks with partial gas saturation[J].Geophysics,1975,40(2):224-232.
  • 5Pride S R,Berryman J G,Harris J M.Seismic attenuation due to wave-induced flow[J].Journal of Geophysical Research,2004,109:B01201.
  • 6Toms J,Müller T M,Ciz R,et al.Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks[J].Soil Dynamics and Earthquake Engineering,2006,26(6-7):548-565.
  • 7Müller T M,Gurevich B,Lebedev M.Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks:a review[J].Geophysics,2010,75(5):A147-A164.
  • 8Johnson D L.Theory of frequency dependent acoustics in patchy-saturated porous media[J].The Journal of the Acoustical Society of America,2001,110(2):682.
  • 9Tisato N,Quintal B.Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone:evidence of fluid flow on the mesoscopic scale[J].Geophysical Journal International,2013,195:342-351.
  • 10Carcione J M,Picotti S.P wave seismic attenuation by slow-wave diffusion:effects of inhomogeneous rock properties[J].Geophysics,2006,71 (3):01-08.

二级参考文献26

  • 1俞寿朋,高分辨率地震勘探,1993年
  • 2Wyllie M R J,Gregory A R,Gardner L W.Elastic wave velocities in heterogeneous and porous media.Geophysics,1956,21:41 ~70
  • 3Gassmann F.Elastic waves through a packing of spheres.Geophysics,1951,16:673 ~ 685
  • 4Berryman J G.Long-wavelength propagation in composite elastic media,Ⅰ:Spherical inclusions.J.Acoust.Soc.Am.,1980,68:1809~ 1819
  • 5Berryman J G.Long-wavelength propagation in composite elastic media,Ⅱ:Ellipsoidal inclusions.J.Acoust.Soc.Am.,1980,68:1820~ 1831
  • 6Berryman J G.Single-scattering approximations for coefficients in Biot's equations of poroelasticity.J.Acoust.Soc.Am.,1992,91:551~571
  • 7Berryman J G.Effective medium approximation for elastic constants of porous solids with microscopic heterogeneity.J.Appl.Phys.,1986,59:1136 ~ 1140
  • 8White J E.Underground Sound:Application of Seismic Waves.New York:Elsevier Press,1983
  • 9White J E.Biot-Gardner theory of extensional waves in porous rods.Geophysics,1986,51:742 ~ 745
  • 10Murphy W F.Effects of partial water saturation on attenuation in Massilon sandstone and porous glass.J.Acoust.Soc.Am.,1982,71:1458 ~ 1468

共引文献111

同被引文献40

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部