期刊文献+

纯氧和空气复苏对新生猪心脏血流和心肌超氧化物歧化酶活性的影响 被引量:2

Impact of resuscitation with oxygen or room air on circulation and oxygen delivery in a hypoxic newborn ;piglet model
原文传递
导出
摘要 目的:通过建立新生猪全身缺氧模型,观察空气或氧气复苏对新生猪心脏泵血功能和心肌超氧化物歧化酶活性的影响。方法32只体重1.6~2.5 kg新生猪随机分为3组,对照组8只,无缺氧损伤,机械通气下给予空气;空气组12只,机械通气下给予120 min全身性缺氧后,空气复苏240 min;氧气组12只,机械通气下给予120 min全身性缺氧后,给予纯氧复苏30 min,然后改为空气复苏210 min。记录缺氧120 min末(复苏0 min)和复苏10、30、60、120、180及240 min时的血气、血压和血流变化。复苏240 min时结束实验,冻存左心室标本,采用酶学法检测超氧化物歧化酶活性。采用单因素方差分析、重复测量的双因素方差分析及Student-Newman-Keuls检验进行统计学分析。结果缺氧造成动物显著的酸中毒、低血压和低氧血症。(1)动脉氧分压:复苏10和30 min时,对照组、空气组与氧气组3组间动脉氧分压差异均有统计学意义[10 min:(67±4)、(78±12)与(409±42) mmHg(1 mmHg=0.133 kPa),F=580.19;30 min:(68±3)、(79±15)与(342±62) mmHg,F=173.67;P均〈0.01]。氧气组动脉氧分压高于对照组和空气组(10 min:q值分别为42.51和39.28;30 min:q值分别为23.17和21.67,P值均〈0.05),但空气组与对照组比较差异无统计学意义。(2)心输出量:复苏240 min时,对照组、空气组与氧气组3组间心输出量差异有统计学意义[(181.6±33.8)、(150.9±70.1)与(103.6±53.6) dl/(min·kg),F=4.82, P〈0.05]。氧气组心输出量低于对照组(q=4.25,P〈0.05),氧气组与空气组、空气组与对照组比较,差异均无统计学意义(P〉0.05)。(3)动脉氧含量:复苏10和30 min时,对照组、空气组与氧气组3组间动脉氧含量差异均有统计学意义[10 min:(87.0±16.1)、(76.9±13.2)与(102.2±15.9) ml O2/dl,F=8.64;30 min:(87.5±14.9)、(79.9±11.3)与(100.1±16.7) ml O2/dl, F=5.98;P值均〈0.01]。复苏10 min时,氧气组CaO2高于对照组和空气组(q值分别为3.14和5.85, P值均〈0.05);复苏30 min时,氧气组高于空气组(q=4.85,P〈0.01),与对照组比较差异无统计学意义(q=2.71,P〉0.05)。(4)氧运输:复苏10、30、60、120、180及240 min时,对照组、空气组与氧气组3组间氧运输的差异均无统计学意义[10 min:(16.5±3.3)、(15.7±9.9)与(16.9±4.2)L O2/(kg·min),F=0.10;30 min:(16.2±4.1)、(15.1±5.5)与(14.5±3.3)L O2/(kg·min), F=0.38;60 min:(16.1±4.2)、(14.9±4.0)与(13.3±3.8) L O2/(kg·min),F=1.28;120 min:(15.5±3.7)、(15.6±6.1)与(13.4±4.6) L O2/(kg·min),F=0.66;180 min:(15.4±3.1)、(15.3±9.3)与(11.9±5.0) L O2/(kg·min),F=0.97;240 min:(14.7±3.4)、(13.4±6.7)与(9.3±5.2) L O2/(kg·min),F=2.84;P值均〉0.05]。(5)左心室超氧化物歧化酶活性:复苏240 min时,对照组(n=6)、空气组(n=8)与氧气组(n=8)左心室超氧化物歧化酶活性差异有统计学意义[(289±107)、(210±75)与(142±61)U/mg protein,F=5.75,P〈0.05],氧气组低于对照组(q=4.79,P〈0.01);空气组与对照组比较、氧气组与空气组比较差异均无统计学意义(q值分别为2.58和2.39,P值均〉0.05)。结论尽管给予纯氧复苏新生猪的动脉氧分压显著高于空气复苏,但并不加快代谢性酸中毒的恢复。对比空气复苏,氧气复苏可显著减少心脏的每搏输出量。给予30 min的纯氧并不增加循环的氧运输,相反可能削弱心肌的抗氧化屏障。 To assess the effects of resuscitation with oxygen or room air on the cardiac circulation and the activity of superoxide dismutase (SOD) in a hypoxic newborn piglet model. Methods Newborn piglets(1.6-2.5 kg) were randomly assigned into three groups:control group (n=8) with no hypoxic insult;room air group (n=12) resuscitated with room air for 240 min after 120 min hypoxia;and oxygen group (n=12) resuscitated with 100% oxygen for 30 min followed by 210 min with room air after 120 min hypoxia. Blood gas analysis, blood pressure and hemodynamic parameters were recorded at 0, 10, 30, 60, 120, 180 and 240 min of resuscitation. The activity of superoxide dismutase (SOD) in the left ventricle was measured at 240 min of resuscitation using enzyme method . One-way analysis of variance, two-way analysis of variance measured repeatedly and Student-Newman-Keuls test were applied as statistical methods. Results Severe metabolic acidosis, hypotension and hypoxemia were caused by hypoxia.(1)Arterial oxygen partial pressure(PaO2):At 10 min of resuscitation, PaO2 of control group, room air group and oxygen group was (67±4), (78±12) and (409±42)mmHg(1 mmHg=0.133 kPa) (F=580.19, P〈0.01). At 30 min of resuscitation, PaO2 of the three group was (68±3), (79±15) and (342±62)mmHg(F=173.67;P〈0.01). PaO2 of oxygen group was higher than room air group and control group (10 min:q=42.51 and 39.28, 30 min: q=23.17 and 21.67, all P〈0.05). There was no statistical significance between the room air group and control group. (2)Cardiac output(CO):At 240 min of resuscitation,CO of control group, room air group and oxygen group was(181.6±33.8), (150.9±70.1) and (103.6±53.6) dl/(min·kg) (F=4.82, P〈0.05). CO of oxygen group was lower than control group (q=4.25,P〈0.05). There was no statistical significance between oxygen group and room air group, neither was between room air group and control group (all P〉0.05). (3)Arterial oxygen content (CaO2):At 10 min of resuscitation, CaO2 of control group, room air group and oxygen group was(87.0±16.1), (76.9±13.2) and (102.2±15.9) ml O2/dl (F=8.64, P〈0.01). At 30 min of resuscitation, CaO2 of the three group was(87.5±14.9), (79.9±11.3) and (100.1±16.7) ml O2/dl (F=5.98, P〈0.01). At 10 min of resuscitation, CaO2 of oxygen group was higher than control group and room air group (q=3.14 and 5.85, all P〈0.05). At 30 min of resuscitation, CaO2 of oxygen group was higher than room air group (q=4.85, P〈0.01), but there was no statistical significance between oxygen group and control group (q=2.71, P〉0.05). (4)Oxygen delivery (DO2): At 10, 30, 60, 120, 180 and 240 min of resuscitation, there were no statistical significance among DO2 of control group, room air group and oxygen group [10 min:(16.5±3.3), (15.7±9.9) and (16.9±4.2)L O2/(kg·min), F=0.10;30 min:(16.2±4.1), (15.1±5.5) and (14.5±3.3) L O2/(kg·min), F=0.38;60 min:(16.1±4.2), (14.9±4.0)and(13.3±3.8)L O2/(kg·min), F=1.28;120 min:(15.5±3.7),(15.6±6.1)and(13.4± 4.6) L O2/(kg·min), F=0.66;180 min:(15.4±3.1), (15.3±9.3) and (11.9±5.0) L O2/(kg·min), F=0.97;240 min:(14.7±3.4), (13.4±6.7) and (9.3±5.2) L O2/(kg·min), F=2.84;all P〉0.05]. (5) SOD activity in the left ventricle:At 240 min of resuscitation, SOD activity of control group (n=6), room air group (n=8) and oxygen group (n=8) was (289±107), (210±75) and (142±61)U/mg protein, F=5.75, P〈0.05]. SOD activity of oxygen group was lower than control group (q=4.79, P〈0.01). There was no statistical significance between oxygen group and room air group, neither was between room air group and control group(q=2.58 and 2.39, all P〉0.05). Conclusions Despite higher oxygen content in the blood, resuscitation with oxygen is not beneficial to recovery from metabolic acidosis in newborn hypoxic piglets. Oxygen supplementation does not increase oxygen delivery but reduces SV compared to resuscitation with room air. Resuscitation with oxygen may impair the oxidative stress defense.
出处 《中华围产医学杂志》 CAS 北大核心 2014年第6期388-395,共8页 Chinese Journal of Perinatal Medicine
关键词 窒息 新生儿 氧吸入疗法 复苏术 每搏输出量 超氧化物歧化酶 Asphyxia neonatorum Oxygen inhalation therapy Resuscitation Stroke volume Superoxide dismutase
  • 相关文献

参考文献12

  • 1International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with treatment recommendations. Part 7:Neotlatal resuscitation[J], Resuscitation,2005,67:293 303.
  • 2Davis PG,Tan A,O'Donnell CP, et al. Resuscitation of newborn infants with 100% oxygen or air:a systematic review and meta- analysis[J]. Lancet, 2004,364:1329-1333.
  • 3Solberg R,Andresen JH,Escrig R,et al.Resuscitation of hypoxic newborn piglets with oxygen induces a dose-dependent increase in markers of oxidation[J]. Pediatr Res,2007,62:559-563.
  • 4Liu JQ,Lee TF,Bigam DL,et al.Effects of post-resuscitation treatment with N-acetylcysteine on cardiac recovery in hypoxic newborn piglets[J].PLoS One, 2010,5:e15322.
  • 5Linner R,Werner O,Perez-de-Sa V, et al.Circulatory recovery is as fast with air ventilation as with 100% oxygen after asphyxia- induced cardiac arrest in piglets[J].Pediatr Res,2009,66:391-394.
  • 6Matsiukevich D,Randis TM,Utkina-Sosunova I,et al.The state of systemic circulation,collapsed or preserved defines the need for hyperoxic or normoxic resuscitation in neonatal mice with bypoxia-ischemia[J].Resuscitation, 2010,81:224-229.
  • 7O'Donnell CP, Davis PG,Morley CJ.Positive pressure ventilation at neonatal resuscitation:review of equipment and international survey of practice[J].Acta Paediatr,2004,93:583-588.
  • 8AI-Salam Z,Johnson S,Abozaid S,et al.The hemodynamic effects of dobutamine during reoxygenation after hypoxia:a dose-response study in newborn pigs[J].Shock,2007,28:317 325.
  • 9Patel A,Lakshminrusimha S,Ryan RM,et al.Exposure to supplemental oxygen downregulates antioxidant enzymes and increases pulmonary arterial contractility in premature lambs[J]. Neonatology,2009,96:182-192.
  • 10Munkeby BH,Borke WB,Bjornland K,et al.Resuscitation ofhypoxic piglets with 100% 02 increases pulmonary metalloproteinases and IL-8[J].Pediatr Res, 2005,58:542-548.

同被引文献17

  • 1Shah P,Riphagen S,Beyene J,et al.Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy[J].Arch Dis Child Fetal Neonatal Ed,2004,89:F152-155.
  • 2Rajakumar PS,Bhat BV,Sridhar MG,et al.Cardiac enzyme levels in myocardial dysfunction in newborns with perinatal asphyxia[J].Indian J Pediatr,2008,75:1223-1225.
  • 3Wei Y,Xu J,Xu T,et al.Left ventricular systolic function of newborns with asphyxia evaluated by tissue Doppler imaging[J].Pediatr Cardiol,2009,30:741-746.
  • 4Xue Q,Dasgupta C,Chen M,et al.Foetal hypoxia increases cardiac AT (2) R expression and subsequent vulnerability to adult ischaemic injury[J].Cardiovasc Res,2011,89:300-308.
  • 5Dong H,Chen Q,Sun S,et al.Overexpression of beta (2) AR improves contractile function and cellular survival in rabbit cardiomyocytes under chronic hypoxia[J].Biochem Biophys Res Commun,2010,398:383-388.
  • 6Aschner JL,Poland RL.Sodium bicarbonate:basically useless therapy[J].Pediatrics,2008,122:831-835.
  • 7Hamed HO.Intrapartum fetal asphyxia:study of umbilical cord blood lactate in relation to fetal heart rate patterns[J].Arch Gynecol Obstet,2013,287:1067-1073.
  • 8Kumar V,Kleffmann T,Hampton MB,et al.Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry[J].Free Radic Biol Med,2013,58:109-117.
  • 9Skeberdis VA.Structure and function of beta3-adrenergic receptors[J].Medicina (Kaunas),2004,40:407-413.
  • 10Lymperopoulos A,Rengo G,Koch WJ.Adrenergic nervous system in heart failure:pathophysiology and therapy[J].Circ Res,2013,113:739-753.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部