期刊文献+

具有非线性传染率和预防接种的SEIR传染病模型的全局稳定性 被引量:1

Global stability of a SEIR epidemic model with nonlinear incidence rate and vaccination
原文传递
导出
摘要 研究一类具有非线性传染率和预防接种的SEIR传染病模型动力学性质,综合利用LaSalle不变集原理、Lyapunov函数、Routh-Hurwitz判据、微分方程轨道稳定和复合矩阵的相关理论,获得保证无病平衡点和地方病平衡点全局渐近稳定的阀值条件,以及一些新结果. In this paper, dynamic property about a SEIR epidemic model with nonlinear incidence rateand vaccination is studied. By using some methods, including LaSalle invariant set principle, Lya-punov function, Routh -Hurwitz bounded, the theory about asymptotically orbital in differential equa-tions and compound matrix, the threshold conditions which guarantee the global asymptotic stable dis-ease - free equilibrium and endemic equilibrium of the SEIR epidemic model are obtained. Some newresults are obtained.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期367-370,375,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(10971001)
关键词 SEIR传染病模型 预防接种 阀值 平衡点 全局渐近稳定性 SEIR epidemic model vaccination threshold equilibrium globally asymptotic stability
  • 相关文献

参考文献6

二级参考文献43

  • 1张仲华,徐文雄.一类SEIS流行病传播数学模型的渐近分析[J].陕西师范大学学报(自然科学版),2004,32(3):1-3. 被引量:2
  • 2徐文雄,张仲华,徐宗本.具有一般形式饱和接触率SEIS模型渐近分析[J].生物数学学报,2005,20(3):297-302. 被引量:23
  • 3Li M Y,Muldowney J S.A geometric Approach to the Global-stability Problems[J].SIAM J Math Anal,1996,27:1 070-1 083.
  • 4Fan M,Li M Y.Global Stability of an SEIS Epidemic Model with Recruitment and a Varying Total Population Size[J].Math Biosci,2001,170:199-208.
  • 5Li M Y,Wang L.Global Stability in Some SEIR Epidemic Models[J].IMA,2002,126:295-311.
  • 6H I Freedman,Ruan Shigui,Tang Moxun.Uniform Persistence and Flows Near a Closed Positively Invariant Set[J].Reprinted From Journal of Dynamics and Equations,1994,6:583-600.
  • 7D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences, 2002, 179(1): 57-72.
  • 8Li Michael Y, Smith Hall, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics, 2001, 62(1): 58-69.
  • 9Meng Xinzhu, Chen Lansun, Cheng Huidong. Two profitless delays for theSEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Applied Mathematics and Computation, 2007, 186(1): 516-529.
  • 10Fine P M. Vectors and vertical transmission: An epidemiologic perspective. Annals of the New York Academy of Sciences, 1975, 266(11): 173-194.

共引文献38

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部