摘要
基于分子连接性及邻接矩阵,计算69种干黄酱挥发性成分的分子连接性指数mχt,借助多元逐步回归法优化筛选了其中的结构参数0χ、5χ、3χc和5χpc,将其作为人工神经网络的输入层神经元,采用4∶8∶1的网络体系结构,以BP算法获得预测保留指数的神经网络模型,其相关系数R和标准偏差S分别为0.985和93.301.结果表明,保留指数与0χ、5χ、3χc、5χpc具有良好的非线性关系,BP神经网络方法预测的结果要优于多元回归方法的结果.
A pattern recognition model for the detection of food management was established by usingback -propagation (BP) algorithm in neural network. Based on molecular connectivity and adjacencymatrix, we calculated 69 volatile flavor compounds in dry yellow soybean sauce in this paper. By usingmultiple stepwise regression method, we screened and optimized the structure parameters xX, 5X, 3Xcand 5 p(p to establish a BP neural network model. The four structural parameters were used as the inputneurons of the artificial neural network, and a 4 " 8 : 1 network architecture was employed. A neuralnetwork model for predicting retention index (RI) was constructed with the back -propagationalgorithm. The correlation coefficient R and the standard errors was 0.985 and 93. 301, respectively,which showed a significantly nonlinear relationship between RI and the four structural parameters. Itcan be concluded that the prediction results of BP neural network are better than those of multipleregression methods.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第3期468-473,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
江苏省自然科学基金资助项目(09KJD150012)
徐州市绿色技术重点实验室项目(SYS2012009)
关键词
人工神经网络
连接性指数
保留指数
挥发性成分
干黄酱
artificial neural network
connectivity index
retention index (RI)
volatile flavor compounds
dry yellow soybean sauce