期刊文献+

截面的几何形状决定三维函数的混沌特性 被引量:7

Chaotic characteristics of three-dimensional function determined by cross-section geometric shape
原文传递
导出
摘要 计算仿真发现,函数f(x,y,z)=sin(k(x2+y2+z2)),f(x,y,z)=k(1-(x2+y2+z2))e(-(x+y+z+u)2),f(x,y,z)=k((x2+y2+z2)/3)(1-(x2+y2+z2)/3)分别与另外两个随机产生的二次多项式函数均可组合成一个三维离散动力系统,当系数k,u在一定范围内取值时,系统出现混沌吸引子的概率可以大于90%.通过绘制分岔图、Lyapunov指数图等对上述系统的混沌特性进行了分析.分析发现,出现混沌概率高的原因是这3个函数的截面都是中间凸起或中间凹陷的曲面,在这样的截面条件下系统容易出现混沌.这普遍适用于三维函数,利用这些三维离散动力系统绘制出的大量吸引子图形具有使用价值和研究价值. The calculation and simulation results show that f(x, y, z) = sin(k(x2+y2+z2)), f(x, y, z) = k(1-(x2+y2+z2)) e(-(x+y+z+u)2), f(x, y, z) = k((x2 +y2 +z2)/3)(1-(x2 +y2 +z2)/3) can easily constructe a three-dimensional (3D) discrete dynamic system by combining other two polynomial functions generated randomly. Through calculating Lyapunov exponent and drawing the bifurcation diagram, the characteristics of chaos of the function are confirmed, and according to the bifurcation diagram of parameters and the Lyapunov exponent curve more chaotic mapping functions are found. Analysis shows that the cross-section geometric shape can determine the chaotic characteristics of 3D function, and the cross-sections are all the median convex or middle concave surfaces, which can constructe chaotic dynamic systems easily. In the future, the mathematical description model and some basic theorems are to be further investigated and their results will be used to solve practical problems such as turbulence.
作者 于万波
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第12期22-30,共9页 Acta Physica Sinica
关键词 混沌 动力系统 三维函数 chaos dynamic system three-dimensional function
  • 相关文献

参考文献15

  • 1Madhok V, Riofrío C A, Ghose S, Deutsch I H 2014 Phys. Rev. Lett. 112 014102.
  • 2Wang X Y, Li F P 2009 Nonlinear Analysis: Theor. 70 830.
  • 3Secelean N A 2014 J. Math. Appl. 410 847.
  • 4Shi Y M, Chen G 2004 Chaos Slitons Fract. 22 555.
  • 5Reza M S 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3857.
  • 6Feng J J, Zhang Q C, Wang W, Hao S Y 2013 Chin. Phys. B 22 090503.
  • 7于万波, 杨灵芝 .2013. 物理学报 62 020503.
  • 8于万波, 周洋 .2013. 物理学报 62 220501.
  • 9于万波, 杨灵芝 .2014. 计算机工程 39 5.
  • 10于万波,杨雪松,魏小鹏.单位平面区域上随机折线映射及其交叉迭代的混沌分析[J].计算机应用研究,2011,28(10):3837-3841. 被引量:4

二级参考文献19

  • 1马文麒,杨承辉.一类耦合非线性振子同步混沌Hopf分岔及其电路仿真[J].物理学报,2005,54(3):1064-1070. 被引量:8
  • 2马少娟,徐伟,李伟,靳艳飞.基于Chebyshev多项式逼近的随机van der Pol系统的倍周期分岔分析[J].物理学报,2005,54(8):3508-3515. 被引量:24
  • 3CHEN Yi-chuan. Family of invariant cantor sets as orbits of differenti- al equations[ J]. International Journal of Bifurcation and Chaos, 2008,18 (7) : 1825-1843.
  • 4GORA P, B OYARSKY A. On the significance of the tent map [ J ]. In- ternational ,Journal of Bifurcation and Chaos ,2003,13 (5) :1299- 1301.
  • 5LAI De-jian, CHEN Guang-rong. Generating different statistical distri- butions by the chaotic skew tent map [J]. International Journal of Bifurcation and Chaos,2000,10 (6) : 1509-1512.
  • 6LI T Y, YORK J A. Period three implies chaos [ J ]. The American Mathematical Monthly, 1975,82 (10) :985.
  • 7LI Chang-pin, CHEN Guan-rong. On the Marotto-Li-Chen theorem and its application to chaotification of multi-dimensional discrete dynamical systems [ J ]. Chaos, Solitons & Fractal,2003,18 (4) : 807-817.
  • 8WANG Xiao-fan, CHEN Guan-rong, YU Xing-huo. Anticontrol of cha- os in continuous-time systems via time-delay feedback [ J ]. Chaos, 2000,10(4) :771-779.
  • 9CHEN G, HUANG Ting-wen, HUANG Yu. Chaotic behavior of inter- val maps and total variations of iterates[ J]. International ,Journal of Bifurcation and Chaos,2004,14(7) : 2.161-2186.
  • 10ZHANG Xu, SHI Yu-ming, CHEN Guan-rong. Constructing chaotic polynomial maps [ J ]. International Journal of Bifurcation and Chaos,2009,19(2) :531-543.

共引文献10

同被引文献27

  • 1Tung T, Matsuyama T. Topology dictionary for 3D video understanding[J]. IEEE Transaction on Pattern Analysis and MachineIntelligence, 2012, 34(8): 1645-1657.
  • 2Schwartz W R, Guo H M, Choi J, et al. Face identification us ing large feature sets[J]. IEEE Transaction on Image Processing,2012, 21(4): 2245-2255.
  • 3Diago L, Kitaoka T, Hagiwara I, et al. Neuro-fuzzy quantificationof personal perceptions of facial images based on a limiteddata set[J]. IEEE Transactions on Neural Networks, 2011,22(12): 2422-2434.
  • 4Lee C S, Elgammal A. Non-linear factorised dynamic shapeand appearance models for facial expression analysis andtracking[J]. IET Computer Vision, 2012, 6(6): 567-580.
  • 5Li R, Tian T P, Sclaroff S. Divide, conquer and coordinate:globally coordinated switching linear dynamical system[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2012, 34(4): 654-669.
  • 6Huang H, He H T. Super-resolution method for face recognitionusing nonlinear mappings on coherent features[J]. IEEE Transactionon Neural Networks, 2011, 22(1): 121-130.
  • 7Mohammadzade H, Hatzinakos D. Iterative closest normalpoint for 3D face recognition[J]. IEEE Transaction on PatternAnalysis and Machine Intelligence, 2013, 35(2): 381-397.
  • 8于万波, 王大庆. 图像函数与三角函数迭代的混沌特性研究[C] //第17 届全国图象图形学学术会议论文集. 北京: 北京交通大学出版社, 2014: 855-861.
  • 9Lei Z, Pietik.inen M, Li S Z. Learning discriminant face descriptor[J]. IEEE Transaction on Pattern Analysis and MachineIntelligence, 2014, 36(2): 289-302.
  • 10Bhatt H S, Singh R, Vatsa M, et al. Improving cross-resolutionface matching using ensemble-based co-transfer learning[J].IEEE Transaction on Image Processing, 2014, 23(12): 5654-5669.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部