期刊文献+

基于节点健康度的无线传感器网络冗余通路控制方法 被引量:3

Faultprevention technique of controlling redundant routes into sleeping based on health degree
原文传递
导出
摘要 广泛应用于各种物理参数测量领域的无线传感器网络,因其节点具有能量供应有限、硬件资源有限、数目众多、自组织和动态拓扑等特点,使得网络极易发生故障,从而高可靠、低故障是其运行的基本要求.本文针对多冗余通路设计的无线传感器网络故障预防方法存在工作状态冗余节点过多、能量大量浪费的问题,提出一种基于节点健康度的冗余通路控制方法.该方法利用汇聚节点收集网络内所有节点能量状态,计算节点健康度等相关参数,使用A-Star算法选择最优工作通路,控制其余冗余通路分批轮流休眠,从而达到减少和均衡网络工作过程能量消耗、预防某些节点能量提前耗尽导致网络能量故障发生的目的.仿真实验和实际节点实验的结果表明,在保证网络适当冗余通路的前提下,与其他相关方法比较,该方法可以显著均衡网络能量消耗,有效预防节点能量故障提前发生,明显延长网络寿命. Wireless sensor networks (WSNs) are widely used in various measurement fields. However, their nodes are charac-teristic of constrained energy supply, limited hardware resource, large number of nodes, self-organization and dynamic topology, which make networks prone to malfunction. As a result, high reliability and low fault are the basic require-ments of WSNs. To prevent too many active nodes and wasting more energy in redundant routing method for WSNs, a fault-prevention technique of controlling redundant routes into sleeping based on health degree is proposed. This tech-nique uses sink node to collect the residual energy of each node, and to calculate energy consumption degree parameter and health degree parameter, and adopts a-star algorithm to control the redundant routes into sleeping mode. The simulation results of NS2 and actual node experimental results show that the present health degree based technique can balance the networks energy consumption and prolong the network lifetime significantly.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第12期387-399,共13页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61170262 61102038)和国家自然科学基金青年科学基金(批准号:51307033)资助的课题~~
关键词 无线传感器网络 节点健康度 冗余通路控制 故障预防 WSNs health degree redundant routes control fault prevention
  • 相关文献

参考文献1

二级参考文献24

  • 1Akyildiz I E;Su W;Sankarasubramaniam Y.查看详情[J],1EEE Commu-nication Magazine2002102.
  • 2Wang Z;Wang Q;Hao X Q.查看详情[A]北京,2009l.
  • 3Yang Y;Blum R S;Sadler B M.查看详情[J],IEEE Transactions on Signal Processing20092050.
  • 4Vaibhav P;Amarjeet K;Narottam C.查看详情[J],Journal of Electronic and Electrical Engineering20101.
  • 5Zhang X;Ding X Y;LU S L.查看详情[A]北京,2009l.
  • 6Xi Y F;Yeh E M.查看详情[J],IEEE Transactions on Information theory20084081.
  • 7Chang T Y;Hsu T C;Hong Y W.查看详情[J],1EEE Transactions on Sig-nal Processing20101369.
  • 8Nidito E;Battelli M;Basagni S.查看详情[A],2007382.
  • 9Xu H L;Huang L SH;Wang G.查看详情[A],FuiianChina2009180.
  • 10Cannons J;Milstein L B;Zeger K.查看详情[J],IEEE Transactions on Wireless Communications20095564.

共引文献13

同被引文献35

  • 1马闯,刘宏伟,左德承,吴智博,杨孝宗.无线传感器网络的层次化故障模型[J].清华大学学报(自然科学版),2011,51(S1):1418-1423. 被引量:3
  • 2蒋杰,方力,张鹤颖,窦文华.无线传感器网络最小连通覆盖集问题求解算法[J].软件学报,2006,17(2):175-184. 被引量:90
  • 3Mahshid R, Wang Z Y, Nasir G, et al. Stochastic analysis of cascading-failure dynamics in power grids[J]. IEEE Transactions on Power Systems. 2014.07, 29(4): 1767- 1779.
  • 4Yan J, Tang Y F, He H B, et al. Cascading failure analysis with dc power flow model and transient stability analysis[J]. IEEE Transactions on Power Systems. 2015.01, 30(1) : 285-297.
  • 5Du H F. Analysis of cascading failure in complex power networks under the load local preferential redistribution rule[J]. Physiea A. 2012, 391:2771 -2777.
  • 6Yang X S, Cao J D, Lu J Q, et al. Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59 (2): 371-384.
  • 7Ahmadi A, Fakhraie S M, Lucas C. Behavioral fault model for neural networks[C]//2009 International Conference on Computer Engineering and Technology. Singapore: IEEE Computer Society, 2009: 72-75.
  • 8Azadmanesh M H, Kieekhafer R M. Exploiting omissive faults in synchronous approximate agreement [J]. IEEE Transactions on Computers, 2000, 49(10) : 1031-1042.
  • 9Fu K, Qu J F, Chai Y, et al. Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals [J]. Biomedical Signal Processing and Control, 2015, 18: 179-185.
  • 10Fu K, Qu J F, Chai Y, etal. Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM [J]. Biomedical Signal Processing and Control, 2014, 13: 15-22.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部