期刊文献+

微富氧环境下煤粉/高炉煤气掺烧锅炉燃烧过程数值模拟 被引量:2

Numerical simulation on combustion process of a pulverized coal/blast furnace gas combined combustion boiler in micro-oxygen-enriched atmosphere
下载PDF
导出
摘要 提出将钢铁企业的放散氧气回收送入其自备电厂混烧锅炉,使炉内形成微富氧燃烧。通过Fluent数值模拟软件对微富氧工况下混烧锅炉的炉内燃烧过程进行数值模拟和热力计算。结果表明:随着助燃空气中氧气浓度的增加,炉内温度水平明显升高,延长了煤粉在炉内的停留时间,增加了辐射换热量,提高了锅炉热效率;氧气浓度的增加还有助于混烧锅炉掺烧部分低热值高灰分烟煤。 Because part of the diffusing oxygen cannot be fully utilized and diffused in the iron and steel enterprises,a new method of diffusing oxygen recycling was proposed,in which the diffusing oxygen is sent to the co-combustion boiler of captive power plant to form micro-oxygen-enriched atmospheres.Numerical simulation and thermodynamic calculation on the combustion process in the combined combustion boiler in micro-oxygen-enriched atmosphere were carried out,by using the Fluent software.The results show that:with an increase in the concentration of oxygen,the temperature in furnace rose obviously,which prolonged the residence time of pulverized coal in furnace,enhanced the radiation heat transfer and improved the boiler thermal efficiency.Moreover,it was helpful for co-firing of the pulverized coal and some bituminous coal with low calorific value and high ash content.
出处 《热力发电》 CAS 北大核心 2014年第6期81-85,123,共6页 Thermal Power Generation
基金 国家高技术研究发展计划(863计划)基金赞助项目(2009AA05Z310) 中央高校基本科研业务费专项资金资助项目(916021106)
关键词 混烧锅炉 微富氧燃烧 放散氧气 氧气浓度 数值模拟 热力计算 diffusing oxygen co-combustion boiler micro-oxygen-enriched combustion oxygen content numerical simulation thermodynamic calculation
  • 相关文献

参考文献8

二级参考文献35

  • 1潘维,池作和,斯东波,阮涛,岑可法.200MW四角切圆燃烧锅炉改造工况数值模拟[J].中国电机工程学报,2005,25(8):110-115. 被引量:82
  • 2Choeng R C, Chang N K. Numerical investigation on the flow, combustion and NOx emission characteristics in a 500 MW tangentially fired pulverized-coal boiler[J]. Fuel, 2009, 88(9): 1720-1731.
  • 3Yin Chungen, Caillat S, Harion J, et al. Investigation of the flow, combustion, heat-transfer and emissions from a 609 MW utility tangentially fired pulverized-coal boiler [J]. Fuel, 2002, 81(8): 997-1006.
  • 4Shen Y S, Guo B Y, Yu A B, et al. A three-dimensional numerical study of the combustion of coal blends in blast furnace[J]. Fuel, 2009, 88(2): 255-263.
  • 5Asotani T, Yamashita T, Tominaga H, et al. Prediction of ignition behavior in a tangentially fired pulverized coal boiler usingCFD[J]. Fuel, 2008, 87(4-5): 482-490.
  • 6Park H Y, Faulkner M, Turrell M D, et al. Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler[J]. Fuel, 2010, 89(8): 2001-2010.
  • 7Gomez A, Fueyo N, DI ez L I. Modelling and simulation of fluid flow and heat transfer in the convective zone of a power-generation boiler[J]. Applied Thermal Engineering, 2008, 28(5-6): 532-546.
  • 8Belosevic S, Sijercic M, Oka S, et al. Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace[J]. International Journal of Heat and Mass Transfer, 2006, 49(19-20): 3371-3378.
  • 9Dong Changqing, Yang Yongping, Yang Rui, et al. Numerical modeling of the gasification based biomass co-firing in a 600 MW pulverized coal boiler[J]. Applied Energy, 2010, 87(9): 2834-2838.
  • 10Diez L I, Cortes C, Pallarrs J. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation[J]. Fuel, 2008, 87(7).. 1259-1269.

共引文献63

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部