摘要
设R是有单位元1的结合环,(S,≤)是严格全序Artin幺半群,M_R是右R-模,Att(M_R)与Att([M^(S,≤)]_([[R^(S,≤)]]))分别表示模M_R与广义逆多项式模[M^(S,≤)]_([[R^(S,≤)]])的所有Attached素理想组成的集合.该文主要讨论了广义幂级数环[[R^(S;≤)]]广义逆多项式模[[R^(S;≤)]]的Attached素理想的相关性质,证明了在一定条件下,有Att([M^(S,≤)]_([[R^(S,≤)]])={[[PR^(S;≤)]]P∈Att(M_R)}.这一结论表明广义逆多项式模([M^(S,≤)]_([[R^(S,≤)]])的Attached素理想在一定条件下可以用模M_R的Attached素理想来刻画,推广了Annin S在文献[1]中关于斜多项式环上逆多项式模的Attached素理想的相关结论.
Let R be an associative ring with identity,and (S,≤) a strictly totally ordered monoid which is also artinian and MR a right R-module.Attached primes of a generalized inverse polynomial module [MS,≤] over a generalized power series ring [[RS,-≤]] are considered in this paper.Given a module MR,we write Att(MR) for the Attached primes of MR.It is shown that Att([MS,≤][[RS,≤]]) ={[[PS,≤]] | P ∈ Att(MR)} under some additional conditions.Thus all Attached primes of [MS,-≤][[RS,≤]] can be described in terms of the Attached primes of MR in a very straightforward way.This result partially generalizes the S.Annin's recent work [1] on inverse polynomial modules over skew polynomial rings.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2014年第3期521-529,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(11071062)
湖南省自然科学基金(10jj3065)
湖南省研究生教改项目(10A033)资助