期刊文献+

广义逆多项式模的Attached素理想

Attached Primes of Generalized Inverse Polynomial Modules
下载PDF
导出
摘要 设R是有单位元1的结合环,(S,≤)是严格全序Artin幺半群,M_R是右R-模,Att(M_R)与Att([M^(S,≤)]_([[R^(S,≤)]]))分别表示模M_R与广义逆多项式模[M^(S,≤)]_([[R^(S,≤)]])的所有Attached素理想组成的集合.该文主要讨论了广义幂级数环[[R^(S;≤)]]广义逆多项式模[[R^(S;≤)]]的Attached素理想的相关性质,证明了在一定条件下,有Att([M^(S,≤)]_([[R^(S,≤)]])={[[PR^(S;≤)]]P∈Att(M_R)}.这一结论表明广义逆多项式模([M^(S,≤)]_([[R^(S,≤)]])的Attached素理想在一定条件下可以用模M_R的Attached素理想来刻画,推广了Annin S在文献[1]中关于斜多项式环上逆多项式模的Attached素理想的相关结论. Let R be an associative ring with identity,and (S,≤) a strictly totally ordered monoid which is also artinian and MR a right R-module.Attached primes of a generalized inverse polynomial module [MS,≤] over a generalized power series ring [[RS,-≤]] are considered in this paper.Given a module MR,we write Att(MR) for the Attached primes of MR.It is shown that Att([MS,≤][[RS,≤]]) ={[[PS,≤]] | P ∈ Att(MR)} under some additional conditions.Thus all Attached primes of [MS,-≤][[RS,≤]] can be described in terms of the Attached primes of MR in a very straightforward way.This result partially generalizes the S.Annin's recent work [1] on inverse polynomial modules over skew polynomial rings.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第3期521-529,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11071062) 湖南省自然科学基金(10jj3065) 湖南省研究生教改项目(10A033)资助
关键词 Attached素理想 广义幂级数环 广义逆多项式模 Attached prime ideal Generalized power series ring Generalized inverse polynomial module
  • 相关文献

参考文献11

  • 1Annin S. Attached primes under skew polynomial rings. Journal of Algebra and Its Applications, 2011, 10:537-547.
  • 2Liu Z K. Endomorphism rings of modules of generalized inverse polynomials. Comm Algebra, 2000, 28: 803-814.
  • 3Liu Z K, Cheng H. Quasi-duality for the rings of generalized power series. Comm Algebra, 2000, 28: 1175 1188.
  • 4Ribenbiom P. Semisimple rings and Von Neumann regular rings of generalized power series rings. J Algebra, 1997, 198:327-338.
  • 5Ribenbiom P. Noetherian rings of generalized power series rings. J Pure Appl Algebra, 1992, 79:293-312.
  • 6Ribenbiom P. Special properties of generalized power series rings. J Pure Appl Algebra, 1995, 173:566 586.
  • 7McKerrow A S. On the injective dimension of modules of power series. Quart J Math Oxford, 1974, 25: 359-366.
  • 8Park S. Inverse polynomials and injective covers. Comm Algebra, 1993, 21:4599-4613.
  • 9Xue W. Quasi-duality, linear compactness and Morita-duality for power series rings. Canda Math Bull 1996, 39:250-256.
  • 10Annin S. Attached primes over noncommutative rings. J Pure Appl Algebra, 2008, 212:510-521.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部