摘要
考虑了一个具有多重非线性的抛物模型中,非线性扩散项、非线性反应项和非线性边界流三种非线性机制之间的相互作用.通过构造自相似上解和自相似下解,获得了临界整体存在性曲线和临界Fujita曲线.
This paper deals with interactions among three kinds of nonlinear mechanisms:nonlinear diffusion,nonlinear reaction and nonlinear boundary flux in a parabolic model with multiple nonlinearities.We obtain the critical global existence curve and critical Fujita curve by constructing various self-similar supersolutions and subsolu-tions.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2014年第3期626-637,共12页
Acta Mathematica Scientia
基金
国家自然科学基金(11371384)
重庆基础与前沿基金(cstc2013jcyjA0940)资助
关键词
临界整体存在性曲线
退化抛物方程
临界Fujita曲线
非牛顿多方渗流方程
爆破
Ritical global existence curve
Degenerate parabolic equation
Critical Fujita curve
Non-Newtonian polytropic filtration equation
Blow-up