期刊文献+

多相催化微观动力学与催化剂理性设计 被引量:4

Microkinetics of Heterogeneous Catalysis and Rational Catalyst Design
下载PDF
导出
摘要 微观动力学研究包含微观动力学分析和催化反应综合两个组成部分,是揭示多相催化反应机理和筛选固体催化剂的重要手段。密度泛函理论的进展和应用使得动力学分析能够半定量地描述复杂过程的反应动力学,并确定标识催化反应活性的描述符及其最优范围。催化反应综合可以在大量候选催化材料中筛选出具有更高活性、选择性、稳定性和更加廉价的多组分催化剂。密度泛函理论计算与微观动力学研究相结合为理性催化剂设计提供了一条崭新的途径。 Microkinetic study including microkinetic analysis and catalytic reaction synthesis has become an important approach to probe reaction mechanisms and to carry out catalyst screening in heterogeneous catalysis. Advances and applications in density functional theory have made it possible to describe the kinetics of complex reaction systems semi-quantitatively and to identify the optimal values of activity descriptors for catalytic reactions. On the basis of this information, catalytic reaction synthesis enables developing a multi-component catalyst with increased catalytic activity, improved selectivity, long-term stability, and low price over a wide range of catalytic materials. The combination of density functional theory and microkinetics opens up a new way for rational design of new catalysts.
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2014年第3期205-211,共7页 Chemical Reaction Engineering and Technology
基金 国家973计划(2012CB720500) 国家自然科学基金(21003046)
关键词 微观动力学分析 催化反应综合 密度泛函理论 催化剂筛选 microkinetic analysis catalytic reaction synthesis density functional theory catalyst screening
  • 相关文献

参考文献28

  • 1National Research Council. Catalysis looks to the future: panel on new directions in catalytic sciences and technology[M]. Washington D C: National Academy Press, 1992:1.
  • 2Tamaru K. Catalytic ammonia synthesis: fundamentals and practice[C]//Jennings J R, ed Mittasch A. Early studies of multicomponent catalysts[J]. Advances in Catalysis, 1950, 12.
  • 3Mittasch A. Early studies of multicomponent catalysts[J]. Advances in Catalysis, 1950, 12:81-104.
  • 4Boudart M. From the century of the rate equation to the century of the rate constants: a revolution in catalytic kinetics and assisted catalyst design[J]. Catalysis Letters, 2000, 65(1/3): 1-3.
  • 5Dumesic J A, Trevino A A, Milligan B A, et al. A kinetic modeling approach to the design of catalysts: formulation of a catalyst design advisory program[J]. Industrial & Engineering Chemistry Research, 1987, 26(7): 1399-1407.
  • 6Dumesic J A, Rudd D F, Aparicio L M, et al. The microkinetics of heterogeneous catalysis[M]. Washington D C: American Chemical Society, 1993. 315.
  • 7Yaluris G, Rekoske J E, Aparicio L M, et al. Isobutane cracking over Y-zeolites II: catalytic cycles and reaction selectivity[J]. Journal of Catalysis, 1995, 153(1): 65-75.
  • 8Cortright R D, Dumesic J A, Madon R J. Catalytic cycles for hydrocarbon cracking on zeolites[J]. Topics in Catalysis, 1997, 4(1/2): 15-26.
  • 9Cortright R D, Dumesic J A. Kinetics of heterogeneous catalytic reactions: analysis of reaction schemes[M]//Gates B, knoezinger H. Advances in Catalysis, vol. 46. USA: Academic Press, 2002: 161-264.
  • 10Baltanas M A, Van Raemdonck K K, Froment G F, et al. Fundamental kinetic modeling of hydroisomerization and hydrocracking onnoble metal-loaded faujasites 1: rate parameters for hydroisomerization[J]. Industrial & Engineering Chemistry Research, 1989, 28(7): 899-910.

同被引文献31

  • 1蒲田,胡建清,周红军,徐春明.炼化工业碳减排路径与电化工/电供能技术发展综述[J].石油科学通报,2023,8(4):445-460. 被引量:5
  • 2刘旦初.多相催化基础问答[J].化学工程师,1994(2):34-35. 被引量:1
  • 3多米西克. 多相催化微观动力学[M]. 沈俭-, 译. 北京: 国防工业出版社, 1998: 158-161.
  • 4Borodziński A, Bond G C. Selective hydrogenation of ethylene in ethane-rich streams on palladium catalysts, part 2: steady-statekinetics and effects of palladium particle size, carbon monoxide, and promoters[J]. Catalysis Reviews, 2008, 50(3): 388-401.
  • 5Crespo-Quesada M, Yarulin A, Jin M, et al. Structure sensitivity of alkynol hydrogenation on shape-and size-controlled palladiumnanocrystals: which sites are most active and selective-[J]. Journal of the American Chemical Society, 2011, 133(32): 12787-12794.
  • 6Studt F, Abild-Pedersen F, Bligaard T, et al. Identification of non-precious metal alloy catalysts for selective hydrogenation ofacetylene[J]. Science, 2008, 320(5881), 1320-1322.
  • 7Tiruppathi P, Low J J, Chan A S Y, et al. Density functional theory study of the effect of subsurface H, C, and Ag on C2H2 hydrogenationon Pd (111)[J]. Catalysis Today, 2011, 165(1): 106-111.
  • 8Sheth P A, Neurock M, Smith C M. A first-principles analysis of acetylene hydrogenation over Pd(111)[J]. The Journal of PhysicalChemistry B, 2003, 107(9): 2009-2017.
  • 9Yang B, Burch R, Hardacre C, et al. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on theactivity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study[J]. Journal of Catalysis, 2013, 305:264-276.
  • 10Sellers H, Gislason J. Adsorption and desorption rate constants for small molecules on metal surfaces: an example of Trouton'srule[J].Surface Science, 1999, 426(2): 147-153.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部