期刊文献+

Linear QSAR Regression Models for the Prediction of Bioconcentration Factors of Chloroanilines in Fish by Density Functional Theory 被引量:16

Linear QSAR Regression Models for the Prediction of Bioconcentration Factors of Chloroanilines in Fish by Density Functional Theory
下载PDF
导出
摘要 Density functional theory(DFT)-B3LYP level with the 6-311G**(d,p) basis set was used to calculate a set of molecular quantum chemical descriptors of 12 chloroanilines. Quantitative structure-activity relationship(QSAR) models of the bioconcentration factors(BCF) of the anilines in fish were established using some of the following calculated descriptors: EHOMO, ENHOMO, ELUMO, ENLUMO, ΔE1(= ELUMO- EHOMO), ΔE2(= ENLUMO- ENHOMO), dipole moment(μ), molecular volume(V), vibrational energy of 0 K(Ev), thermodynamic energy(E), heat capacity(Cv), entropy(Sm) and the charge of benzene ring(Qph). Using the variable selection and leaps-and-bounds regression, the quantum chemical descriptors derived directly from the molecular structures were employed to develop a linear QSAR model between the bioconcentration factors(BCF) and two descriptors(Sm, ENHOMO) of 12 chloroanilines. Statistically, the most significant one is a two-parameter linear equation with the correlation coefficient(R^2) of 0.981 and cross-validated correlation coefficient(Rcv^2) of 0.967. The established QSAR model has good stability and predictability based on the results from Rcv2 of leave-one-out cross-validation, AIC, FIT and tα/2. The quantum chemical analyses were performed from two aspects of frontier molecular orbital and entropy. The results show that two structural describers are crucial to the bioconcentration activity of chloroanilines. Density functional theory(DFT)-B3LYP level with the 6-311G**(d,p) basis set was used to calculate a set of molecular quantum chemical descriptors of 12 chloroanilines. Quantitative structure-activity relationship(QSAR) models of the bioconcentration factors(BCF) of the anilines in fish were established using some of the following calculated descriptors: EHOMO, ENHOMO, ELUMO, ENLUMO, ΔE1(= ELUMO- EHOMO), ΔE2(= ENLUMO- ENHOMO), dipole moment(μ), molecular volume(V), vibrational energy of 0 K(Ev), thermodynamic energy(E), heat capacity(Cv), entropy(Sm) and the charge of benzene ring(Qph). Using the variable selection and leaps-and-bounds regression, the quantum chemical descriptors derived directly from the molecular structures were employed to develop a linear QSAR model between the bioconcentration factors(BCF) and two descriptors(Sm, ENHOMO) of 12 chloroanilines. Statistically, the most significant one is a two-parameter linear equation with the correlation coefficient(R^2) of 0.981 and cross-validated correlation coefficient(Rcv^2) of 0.967. The established QSAR model has good stability and predictability based on the results from Rcv2 of leave-one-out cross-validation, AIC, FIT and tα/2. The quantum chemical analyses were performed from two aspects of frontier molecular orbital and entropy. The results show that two structural describers are crucial to the bioconcentration activity of chloroanilines.
出处 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第6期830-834,共5页 结构化学(英文)
基金 co-financed by the National Natural Science Foundation of China(21075138) special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(13K02ESPCT)
关键词 CHLOROANILINES bioconcentration factor density functional theory quantum chemical describers quantitative structure-activity relationship chloroanilines,bioconcentration factor,density functional theory,quantum chemical describers,quantitative structure-activity relationship
  • 相关文献

参考文献8

二级参考文献165

  • 1欧阳亮,何谷,郭丽.一类新型N型钙通道阻滞剂的比较定量构效关系研究[J].化学学报,2006,64(13):1379-1384. 被引量:4
  • 2Kamlet, M. J.; Doherty, R. M.; Veith, G. D.; Taft, R. W.; Abrabam, M. H. Environ. Sci. Technol. 1986, 20, 690-695.
  • 3Kamlet, M. J.; Doherty, R. M.; Taft, R. W.; Abrabam, M. H.; Veith, G. D.; Abraham, D. J. Environ. Sci. Technol. 1987, 21,149-155.
  • 4Hickey, J. E; Passino-Reader, D. R. Environ. Sci. Technol. 1991, 25, 1753-1760.
  • 5Pandeya, S. N.; Ojha, T. N.; Srivastava, V. J. Sci. Ind. Res. 1985, 44, 150-162.
  • 6He, Y. B.; Wang, L. S.; Liu, Z. T.; Zhang, Z. Chemosphere 1995, 31, 2739-2746.
  • 7Liu, X. H.; Yang, Z. F.; Wang, L. S. Chemosphere 2003, 53, 945-952.
  • 8Liu, X. H.; Yang, Z. F.; Wang, L. S. SAR and QSAR in Environ. Res. 2003, 14, 183-190.
  • 9Liu, X. H.; Wang, B.; Huang, Z. Chemosphere 2003, 50, 403-408.
  • 10Chen, J. W.; Wang, L. S. Chemosphere 1997, 35, 623-631.

共引文献64

同被引文献116

引证文献16

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部