摘要
图G的线图L(G)是指以G的边集E(G)为顶点集且L(G)的2个顶点邻接当且仅当它们在G中有公共顶点.n次迭代线图Ln(G)递归地定义为L0(G)=G,Ln(G)=L(Ln-1(G))(n∈N={0,1,2,…}),其中L1(G)=L(G)并且假设Ln-1(G)非空,使得Ln(G)是哈密尔顿的最小整数n称为哈密尔顿指数,用h(G)表示.该文综述了(类)哈密尔顿指数的一些结果.
Let G be a simple graph. The line graph L( G)of a graph G is a graph which has E( G)as its vertex set and two vertices are adjacent in L( G)if and only if they share an end vertex in G. The n-th iterated line graph Ln(G)is defined recursively by L0(G)=G,Ln(G)=L(Ln-1(G))(n∈N={0,1,2,…}),where L1(G)=L(G) and Ln-1( G)is assumed to be nonempty. The hamiltonian index of a graph G,denoted by h( G),is the smallest in-teger n such that Ln(G)is hamiltonian. The results of hamiltonian(like)indices of graphs have been summariczed.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2014年第3期229-235,共7页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金(11071016
11171129)
教育部博士点基金(20131101110048)资助项目