期刊文献+

一种基于多因素的BA演化模型

A BA Evolution Model Based on Multi-factor
下载PDF
导出
摘要 针对BA模型的缺陷以及择优连边的单一性,提出了一种基于多因素的混合连边方式的BA模型,该模型中的节点连接概率由节点的度和节点的PageRank值共同决定,并且引入了随机连接机制。仿真结果显示,该模型的度分布呈幂律分布,通过调节参数值可大范围调节聚类系数,比原始BA模型具有更优的统计特性。 For the drawback of the BA model and the oneness of preferential attachment ,a BA model of mixed attach-ment based on multi-factor is proposed .The probability of attachment is decided by nodes'degree and PageRank value .The random connection mechanism is introduced .The simulation results show that the degree distribution of this model presents power-law distribution .The clustering coefficient has a large range by adjusting the parameter .The proposed model has bet-ter statistical properties than the original BA model does .
出处 《计算机与数字工程》 2014年第6期1042-1045,共4页 Computer & Digital Engineering
关键词 BA模型 混合连边 度分布 聚类系数 BA model mixed attachment degree distribution clustering coefficient
  • 相关文献

参考文献9

  • 1Watts D J, Strogatz S H. Collective dynamics of ' small-world' networks[J]. Nature, 1998,393 (6684) : 440-442.
  • 2Barabasi A.-L. , Albert R. (1999) Science 286, 509.
  • 3Bianconi G, Barabasi A L. Bose-Einstein condensation in complex networks[J].Physical Review Letters, 2001,86 (24) : 5632-5635.
  • 4陶少华,杨春,李慧娜,张勇.基于节点吸引力的复杂网络演化模型研究[J].计算机工程,2009,35(1):111-113. 被引量:14
  • 5方芳,李仁发,何建军.基于改进PageRank的BA演化模型[J].计算机工程与设计,2010,31(9):1901-1904. 被引量:2
  • 6Lawrenee Page, Sergey Brin, Rajeev Motwani, et al. The Page Rank Citation Ranking: Bringing order to the Web, Califonia, USA: Stanford Digital Library, 1998: 1-16.
  • 7Holme P, KimB J. Growing scale-free networks with tuna- ble clustering[J]. Physical Review E, 2002,65 (2) : 026107.
  • 8Mossa S, Barthelemy M, Stanley H E, et al. Trunca- tion of power law behavior in "scale-free" network models due to information filtering[J]. Physical Re- view Letters,2002,88(13): 138701.
  • 9潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究[J].系统仿真学报,2006,18(8):2346-2348. 被引量:86

二级参考文献30

  • 1郭进利.有向复杂网络的Poisson模型[J].上海理工大学学报,2006,28(3):227-232. 被引量:8
  • 2李季,汪秉宏,蒋品群,周涛,王文旭.节点数加速增长的复杂网络生长模型[J].物理学报,2006,55(8):4051-4057. 被引量:51
  • 3Albert R, Barabasi A L. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512.
  • 4Albert R, Jeong H. Mean-field Theory for Scale-free Random Networks[J]. Physica A: Statistical Mechanics and Its Applications, 1999, 272(1/2): 173-187.
  • 5Li Xiang, Chen Guanrong. A Local-world Evolving Network Model[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 328(1/2): 274-286.
  • 6Jeong H, N6da Z. Measuring Preferential Attachment in Evolving Networks[J]. Europhys. Lett., 2003, 61(4): 567-572.
  • 7Dorogovtsev S N, Mendes J F. Structure of Growing Networks with Preferential Linking[J]. Phys. Rev. Lea., 2000, 85(21): 4633-4636.
  • 8Jeong H,Neda z.Measuring preferential attachment in evolving networks[J].Europhys Lett,2003,61(4):567-572.
  • 9Bianconi G,Barabasi A L.Bose-Einstein condensation in complex networks[J].Physical Review Letters,2001,86(24):5632-5635.
  • 10Shaohua Tao,Chaofeng Guo.BA extended model based on the competition factors[C].Proceedings of the Workshop on Power Electronics and Intelligent Transportation System,2008:561-564.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部